Math, asked by Family9140, 10 months ago

The radius of the internal and external surfaces of a hollow spherical shell are 3 cm and 5 cm respectively. If it is melted and recast into a solid cylinder of height 2 2/3 cm. Find the diameter of the cylinder.

Answers

Answered by rahul123437
3

Diameter of the cylinder is 14 cm.

To find : The diameter of the cylinder.

Given :

Radius ( r_1 ) of the internal surface of a hollow spherical shell = 3 cm.

Radius ( r_2 )of the external surface of a hollow spherical shell = 5 cm.

Cylinder height = 2\frac{2}{3} cm = \frac{8}{3} cm.

Let the cylinder radius be r_3.

Formula used :

Volume of sphere = \frac{4}{3} \pi r^3

Volume of cylinder = \pi r^2h

Hence, sphere has two radius r_1 and r_2.

So, r = r_2 - r_1

Volume of sphere = Volume of cylinder

\frac{4}{3}\pi  (r_2^3- r_1^3) = \pi r_3^2h

Here, "\pi" get cancel each other.

\frac{4}{3}(r_2^3 - r_1^3) =r_3^2h

Substituting the values of radius and height, we get

\frac{4}{3} ((5)^3 - (3)^3) = r_3^2\times \frac{8}{3}

\frac{4}{3} (125 - 27) = r_3^2\times \frac{8}{3}

\frac{4}{3} (98) = r_3^2\times \frac{8}{3}

\frac{4 \times 98 \times 3}{3 \times 8}=r_3^2

r_3^2 = \frac{4 \times 98}{8}

r_3^2= \frac{98}{2}

r_3^2= 49

r_3= \sqrt{49}

r_3=7

Hence, the radius of the cylinder is 7 cm.

Diameter of the cylinder = 2 × radius = 2 × r_3 = 2 × 7 = 14 cm.

Therefore, the diameter of the cylinder is 14 cm.

To learn more...

1. The radii of internal and external surfaces of a hollow spherical shell at 3 cm and 5 cm respectively it is melted and recast into a solid cylinder of diameter 14 cm find the height of the cylinder

brainly.in/question/7851326

2. The internal and external radii of a hollow spherical shell are 3 cm and 5cm respectively. if it is melted and recast into a solid cylinder of diameter 14 cm . find the heigt of the cylinder

brainly.in/question/7224093

Answered by silentlover45
13

\underline\mathfrak{Given:-}

  • The radius of the internal and external of a hollow of a hollow spherical shell are 3cm and 5cm.
  • A solid cylinder of height 2 2/3 cm.

\underline\mathfrak{To \: \: Find:-}

  • Find the the diameter of the cylinder ......?

\underline\mathfrak{Solutions:-}

Radius of the internal surface of a hollow spherical shell = 3cm.

Volume of sphere in internal shell

\: \: \: \: \: \leadsto \: \: \frac{4}{3} \: \pi \: {r}^{3}

\: \: \: \: \: \leadsto \: \: \frac{4}{3} \: \times \: \pi  \: \times \: {(3)}^{3}

Radius of the external surface of a hollow spherical shell = 5cm.

Volume of sphere in external shell

\: \: \: \: \: \leadsto \: \: \frac{4}{3} \: \pi \: {r}^{3}

\: \: \: \: \: \leadsto \: \: \frac{4}{3} \: \times \: \pi  \: \times \: {(5)}^{3}

Volume of metal

\: \: \: \: \: \leadsto \: \: \frac{4}{3} \: \pi  \: \times \: {(5)}^{3} \: - \: \frac{4}{3} \: \times \: \pi  \: \times \: {(3)}^{3}

\: \: \: \: \: \leadsto \: \: \frac{4}{3} \: \pi  \: {({(5)}^{3} \: - \: {(3)}^{3})}

\: \: \: \: \: \leadsto \: \: \frac{4}{3} \: \pi  \: {({125} \: - \: {27})}

\: \: \: \: \: \leadsto \: \: \frac{4}{3} \: \pi  \: {({125} \: - \: {27})}

\: \: \: \: \: \leadsto \: \: \frac{4}{3} \: \pi  \: \times \: {98} \: {cm}^{3}

height of cylinder = 8/3 cm

\: \: Volume \: \: of \: \: cylinder \: \: \leadsto \: \: \frac{4}{3} \: \pi  \: \times \: {98} \: {cm}^{3}

\: \: \: \: \: \leadsto \: \: \pi  \: {r}^{2} \: h \: \: = \: \: \frac{4}{3} \: \pi  \: \times \: {98}

\: \: \: \: \: \leadsto \: \: {r}^{2} \: \: = \: \: \frac{4}{3}  \: \times \: {98} \: \times \: \frac{3}{8}

\: \: \: \: \: \leadsto \: \: {r}^{2} \: \: = \: \: {49}

\: \: \: \: \: \leadsto \: \: {r} \: \: = \: \: {7}

Diameter of cylinder

= 2 × 7

= 14cm

Hence, the diameter of cylinder is 14cm.

Similar questions