Math, asked by lisarose0345, 1 month ago

The range of of the function f(x)=|3x+2|-4 is​

Answers

Answered by vasanthyrajahmuniapp
0

Answer:

Please confirm within it

Step-by-step explanation:

They have given the function like this so correctly I doesn't know but my guessing is 3x-2 is the answer.

Answered by BrutalMaster
57

Answer:

f (x) = loge (3x2 + 4) 

Let y = loge (3x2 + 4)

⇒ 3x2 + 4 = ey   ⇒ x =  √ e y − 4 3 ey−43 

For x to be defined  e y − 4 3 ey−43 ≥ 0 ey – 4 ≥ 0 

⇒ ey ≥ 4 

⇒ y ≥ loge 4

⇒ y ≥ 2 loge 2 

∴  Range of the function is [2 loge 2, ∞)

Answered by BrutalMaster
128

Answer:

f (x) = loge (3x2 + 4) 

Let y = loge (3x2 + 4)

⇒ 3x2 + 4 = ey   ⇒ x =  √ e y − 4 3 ey−43 

For x to be defined  e y − 4 3 ey−43 ≥ 0 ey – 4 ≥ 0 

⇒ ey ≥ 4 

⇒ y ≥ loge 4

⇒ y ≥ 2 loge 2 

∴  Range of the function is [2 loge 2, ∞)

Similar questions