The range of of the function f(x)=|3x+2|-4 is
Answers
Answered by
0
Answer:
Please confirm within it
Step-by-step explanation:
They have given the function like this so correctly I doesn't know but my guessing is 3x-2 is the answer.
Answered by
57
Answer:
f (x) = loge (3x2 + 4)
Let y = loge (3x2 + 4)
⇒ 3x2 + 4 = ey ⇒ x = √ e y − 4 3 ey−43
For x to be defined e y − 4 3 ey−43 ≥ 0 ey – 4 ≥ 0
⇒ ey ≥ 4
⇒ y ≥ loge 4
⇒ y ≥ 2 loge 2
∴ Range of the function is [2 loge 2, ∞)
Answered by
128
Answer:
f (x) = loge (3x2 + 4)
Let y = loge (3x2 + 4)
⇒ 3x2 + 4 = ey ⇒ x = √ e y − 4 3 ey−43
For x to be defined e y − 4 3 ey−43 ≥ 0 ey – 4 ≥ 0
⇒ ey ≥ 4
⇒ y ≥ loge 4
⇒ y ≥ 2 loge 2
∴ Range of the function is [2 loge 2, ∞)
Similar questions