Chemistry, asked by Manishdvarade7872, 1 year ago

The rate of chemical reaction doubles for an increase of 10k from 298 k. Calculate ea

Answers

Answered by nalinsingh
6

Hey !!

log k₂/k₁ = Ea / 2.303 R [T₂ - T₁] / T₂T₁

 Ea = 2.303 R log k₂/k₁ [T₁T₂ / T₂ - T₁]

= (2.303) (8.314 J K⁻¹ mol⁻¹) (log 2/1) × ( 298 K × 308 K ) /( 308 - 298 K )

= 52898 J mol⁻¹ = 52.9 kJ mol⁻¹

Hope it helps you !!

Answered by Harsh8557
35

Answer:

  • 52.9 KJ mol^{-1}

Explanation:

Given

  • Initial temperature (T1) = 298 K
  • Final temperature (T2) = (298 + 10)K = 308 K
  • Reaction doubles when temperature is increased by 10°

Let's assume

  • Value of k1 = k
  • k2 = 2k
  • R = 8.314JK^{-1}mol^{-1}

Formula to be used:

\boxed{ln\frac{k_{2}}{k_{1}}=\frac{E}{R}\bigg[\frac{T_{2}-T_{1}}{T_{1}T_{2}}\bigg]}

\implies\:\:log\frac{k_{2} }{k_{1}}= \frac{E}{2.303R} \bigg[\frac{T_{2}-T_{1}}{T_{1}T_{2}}\bigg]

\implies\:\:log\frac{2k}{k}\frac{E}{2.303R}\bigg[\frac{308-298}{298\times308}\bigg]

\implies\:\:log\frac{2k}{k}\frac{E_{a}}{2.303 \times 8.314}\bigg[ \frac{10}{298\times308}\bigg]

\implies\:\:log2= \frac{E_{a}}{2.303 \times 8.314}\bigg[ \frac{10}{298\times308}\bigg]

\implies\:\:E_{a} = \frac{ 2.303 \times 8.314 \times298 \times 308 \times log 2}{10}

\implies\:\:52897.78 J mol^{-1}

\implies\:\:52.9 \:KJ\: mol</p><p>^{-1}

Similar questions