Math, asked by Anonymous, 4 months ago

The ratio between the curved surface area
and the total surface area of a cylinder is
1:2. Find the ratio between the height and the
radius of the cylinder

√ Answer needed from stars/mods.​

Answers

Answered by ImperialGladiator
20

Answer :

The required ratio 1 : 1

Explanation :

Question says that,

C. S. A. of a cylinder : T. S. A. of the cylinder = 1 : 2

Find the ratio of radius and height.

We know that,

C. S. A.(curved surface area) of a cylinder : \sf 2\pi rh

And, T. S. A.(total surface area) : \sf 2\pi rh + 2\pi r^2 or, 2\pi r(r + h)

Given :

\sf \implies  2\pi rh : 2\pi r(r + h) = 1 : 2

Finding the ratio of height and radius.

Note :

  • ‘r’ denotes radius
  • ‘h’ is the height.

According to the question :

 \sf\implies  2\pi rh : 2\pi r(r + h) = 1 : 2

\\  \sf \implies \dfrac{2\pi rh}{2\pi r(r + h)} = \dfrac{1}{2}

\\  \sf\implies  \dfrac{h}{(r + h) } = \dfrac{1}{2}

\\ \sf \implies 2h = 1(r + h)

\\ \sf \implies  2h = r + h

\\  \sf\implies  2h - h = r

\\ \sf \implies  h = r  \\

\sf \therefore radius \: is \: equal \: to \: the \: height

Now, we need to find the ratio of ‘r’ and ‘h'

Let's assume that,

→ r = h = x units.

Their ratio :

\implies {\sf {r : h }} = x : x

\implies {\sf \dfrac{r}{h}} = \dfrac{\not x}{\not x}

\implies {\sf \dfrac{r}{h} = \dfrac{1}{1}}

\sf \therefore r : h = 1 : 1

Answered by mathdude500
5

\begin{gathered}\begin{gathered}\bf \: Given \:  - \begin{cases} &\sf{A \: cylinder \: in \: which} \\ &\sf{CSA : TSA \:  =  \: 1 :2 } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: find \:  - \begin{cases} &\sf{height_{cylinder} : r_{cylinder}}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\begin{gathered}\bf Let=\begin{cases} &\sf{r  \: be \:  the \:  radius \:  of  \: cylinder} \\ &\sf{h \:  be \:  the \:  height \:  of \:  cylinder} \end{cases}\end{gathered}\end{gathered}

We know,

 \bullet \: {{ \boxed{{\bold\green{Curved \:  Surface \:  Area_{(Cylinder)}\: = \:2\pi rh}}}}}

 \bullet \: {{ \boxed{{\bold\green{Total \:  Surface \:  Area_{(Cylinder)}\: = \:2\pi r(h +r)}}}}}

Now,

\begin{gathered}\bf\red{According \: to \: statement}\end{gathered}

\rm :\implies\:\dfrac{ CSA_{cylinder}}{TSA_{cylinder}}  = \dfrac{1}{2}

\rm :\implies\:\dfrac{2\pi rh}{2\pi r(h +r)}  = \dfrac{1}{2}

\rm :\implies\:\dfrac{h}{h \:  +  \: r}  = \dfrac{1}{2}

\rm :\implies\:2h \:  =  \: h \:  +  \: r

\rm :\implies\:h \:  =  \: r

\rm :\implies\:\dfrac{h}{r}  = 1

\rm :\implies  \: \large \boxed{ \pink{ \bf \: h : r \:  =  \: 1 : 1}}

Hence,

   \large\underline{\boxed{ \boxed{ \purple{  \rm \: height_{cylinder} : r_{cylinder} \:  =  \: 1 : 1}}}}

More information :-

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length²+breadth²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions