Math, asked by skyeswantsakthi, 4 days ago

The ratio in which the line segment joining the points PC-3, 10) and Q(6,- S) is divided by
Ol-1, 6) is

Answers

Answered by CookieCrunch22
2

Answer:

The coordinates of the point P(x, y) which divides the line segment joining the points A(x₁, y₁) and B(x₂, y₂), internally, in the ratio m₁: m₂ is given by the Section Formula: P(x, y) = [(mx₂ + nx₁) / m + n, (my₂ + ny₁) / m + n]

Let the ratio in which the line segment joining j

7k = 2

k = 2 / 7

Hence, the point C divides line segment AB in the ratio 2 : 7.

plz thank my answers follow n brainliest

Answered by Manmohan04
1

Given,

\[P\left( { - 3,10} \right),Q\left( {6, - 8} \right)\] divided by \[O\left( { - 1,6} \right)\]

Solution,

The coordinates of the point \[P\left( {x,y} \right)\] which divides the line segment joining the points\[A\left( {{x_1},{\rm{ }}{y_1}} \right){\rm{ }}and{\rm{ }}B\left( {{x_2},{\rm{ }}{y_2}} \right),\]in the ratio of \[m:n\] is given by the Section Formula,

\[P\left( {x,y} \right) = \left\{ {\left( {\frac{{m{x_2} + n{x_1}}}{{m + n}}} \right),\left( {\frac{{m{y_2} + n{y_1}}}{{m + n}}} \right)} \right\}\]

\[O\left( { - 1,6} \right) = \left\{ {\left( {\frac{{m \times 6 + n\left( { - 3} \right)}}{{m + n}}} \right),\left( {\frac{{m \times \left( { - 8} \right) + n \times 10}}{{m + n}}} \right)} \right\}\]

Compare the both coordinate,

\[\begin{array}{l}6m - 3n =  - m - n\\ \Rightarrow 7m - 2n = 0\\ \Rightarrow 7m = 2n -  -  -  - \left( 1 \right)\\ - 8m + 10n = 6m + 6n\\ \Rightarrow  - 14m + 4n = 0\\ \Rightarrow 7m = 2n -  -  -  - \left( 2 \right)\end{array}\]

Consider,

\[\begin{array}{l}m = 2\\n = 7\end{array}\]

Hence the ratio is \[2:7\]

Similar questions