The ratio of incomes of two persons is 5:3 and that of their expenditures is 9:5. if they save rs 2600 and rs 1800 respectively their incomes are? with solution
Answers

=> 25x - 13000 = 27x - 16200
2x = 16200 - 13000
2x = 3200
x = 1600
∴ Income of A=5x=5×1600=Rs.8000∴ Income of A=5x=5×1600=Rs.8000
B=3x=3×1600=Rs.4800B=3x=3×1600=Rs.4800
.............................................................................................
Let the two persons be A and B.
.
Income = A : B = 5 : 3 (Given)
Expenditure = A : B = 9 : 5 (Given)
..............................................................................................
STEP 1: Form the equation:
Let x be the constant ratio for income.
Let y be the constant ratio for expenditure.
5x - 2600 = 9y
3x - 1800 = 5y
..............................................................................................
STEP 2: Solve x and y:
5x - 2600 = 9y --------------- [ 1 ]
3x - 1800 = 5y --------------- [ 2 ]
.
[ 1 ] x 3 : 15x - 7800 = 27y --------------- [ 3 ]
[ 2] x 5: 15x - 9000 = 25y --------------- [ 4 ]
.
[ 3 ] - [ 4 ]:
2y = 1200
y = 600 --------------- Substitute into [ 1 ]
.
5x - 2600 = 9 (600)
5x - 2600 = 5400
5x = 8000
x = 1600
..............................................................................................
STEP 3: Find their income:
A = 5x = 5(1600) = Rs 8000
B = 3x = 3(1600) = Rs 4800
..............................................................................................
Answer: Their incomes are Rs 8000 and Rs 4800
.............................................................................................