Math, asked by pleaseanswer6047, 1 month ago

The ratio of length and width of a door is 5:3 and its perimeter is 48m. Find the measurement of door

Answers

Answered by ImperialGladiator
34

Answer:

  • 135m²

Explanation:

A door with ratio of,

  • length : width = 5 : 3

And also, the perimeter is 48m

Let's say that,

  • length = 5x
  • width = 3x

Then, the perimeter will be :-

⇒ 2(length + width)

⇒ 2(5x + 3x)

⇒ 2(8x)

⇒ 16x

But, the perimeter given is 48m

According to the question,

⇒ 16x = 48

⇒ x = 48/16

⇒ x = 3

Therefore,

  • Length = 5x = 5(3) = 15m
  • Width = 3x = 3(3) = 9m

Hence, it's measurement is :-

⇒ length × width

⇒ 15 × 9

⇒ 135m²

Measurement of the door is 135m²

_________________________

Answered by Anonymous
19

 \large \tt \green{ \pmb{ \underline{Given : }}}

  • The ratio of length and width of a door is 5 : 3.
  • It's perimeter is 48 m.

\large \tt \green{ \pmb{ \underline{To \:  find : }}}

  • Find the measurement of door.

\large \tt \green{ \pmb{ \underline{Solution : }}}

 \sf{ let \: consider \: that \: common \: number \: be \: x.}

 \sf{ \therefore  \: length \:  = 5x}

 \sf{breadth = 3x}

 \sf{We \: know \: that,}

 \sf{The \: shape \: of \: door \: is \: rectangle}

 \fbox{ \sf\color{pink}{ \underline{Perimeter \: of \: rectangle = 2(length + breadth)}}}

 \sf{ \qquad  \:  \:  \:  \dashrightarrow \: 48 = 2(5x + 3x)}

\sf{ \qquad  \:  \:  \:  \:  \:  \dashrightarrow \: 48 = 2 \times 8x}

\sf{ \qquad  \:  \:  \:  \:  \:  \:  \:  \dashrightarrow \: 48 = 16x}

\sf{ \qquad  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dashrightarrow \: x =  \cancel{  \frac{48}{16} }}

\sf{ { \qquad  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dashrightarrow  \underline \color{greenyellow}{ \: x = 3}}}

 \sf{ \:  \:  \:  \:  \ \:────┈┈┈┄┄╌╌╌╌┄┄┈┈┈──── }

 \sf{length = 5x = 5 \times 3 = 15}

 \sf{breadth  = 3x = 3  \times 3 = 9}

 \sf{ \therefore \: Measurement = Length \times  breadth}

 \sf{  \qquad \:  \:   \:  \:  \dashrightarrow \: Measurement = 15 \times 9 = 135 {m}^{2} }

Similar questions