Math, asked by pratapdaksh20, 1 month ago

The Ratio of Length To Breadth of a Rectangular Field is 4 : 3. If Its Diagonal is 200 m, The Area of The Field in square meters Do it With Proof a) 18200 b) 19200 c) 18500 d) 18900 ​

Answers

Answered by ayantik98
1

Answer:

The Ratio of Length To Breadth of a Rectangular Field is 4 : 3.

Diagonal of Rectangle is 200 m .

To Find :

Area of field .

Solution :

\longmapsto\tt{Let\:length\:of\:the\:field\:be=4x}⟼Letlengthofthefieldbe=4x

\longmapsto\tt{Let\:breadth\:of\:the\:field\:be=3x}⟼Letbreadthofthefieldbe=3x

Using Formula :

\longmapsto\tt\boxed{Diagonal=\sqrt{{(l)}^{2}+{(b)}^{2}}}⟼

Diagonal=

(l)

2

+(b)

2

Putting Values :

\longmapsto\tt{200=\sqrt{{(4x)}^{2}+{(3x)}^{2}}}⟼200=

(4x)

2

+(3x)

2

\longmapsto\tt{200=\sqrt{{16x}^{2}+{9x}^{2}}}⟼200=

16x

2

+9x

2

\longmapsto\tt{200=\sqrt{{25x}^{2}}}⟼200=

25x

2

\longmapsto\tt{200=5x}⟼200=5x

\longmapsto\tt{\cancel\dfrac{200}{5}=x}⟼

5

200

=x

\longmapsto\tt\bf{40=x}⟼40=x

Value of x is 40 .

Therefore :

\longmapsto\tt{Length\:of\:field=4(40)}⟼Lengthoffield=4(40)

\longmapsto\tt\bf{160\:m}⟼160m

\longmapsto\tt{Breadth\:of\:field=4(30)}⟼Breadthoffield=4(30)

\longmapsto\tt\bf{120\:m}⟼120m

For Area :

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Rectangle=l\times{b}}⟼

AreaofRectangle=l×b

Putting Values :

\longmapsto\tt{160\times{120}}⟼160×120

\longmapsto\tt\bf{19200\:{m}^{2}}⟼19200m

2

Option b) 19200 is Correct .

Similar questions