The ratio of radius of the circular path when an alpha particle and a proton is kept in an uniform magnetic field when kinetic energy is same
Answers
Explanation:
r=mv/qB
r=p/qB
r=√2km/qB
Answer:
Explanation:
Time period of revolution is given as,
begin mathsize 11px style straight T space equals space fraction numerator 2 πm over denominator Bq end fraction end style
Let mp = mass of the proton
mα = mass of the alpha particle.
qp = charge of the proton
qα = charge of the alpha particle.
For proton: time period,
begin mathsize 11px style straight T subscript 1 space equals space fraction numerator 2 πm subscript straight p over denominator Bq subscript straight p end fraction equals space fraction numerator 2 πm over denominator Bq end fraction end style
For alpha particle: time period,
Syntax error from line 1 column 55 to line 1 column 96. Unexpected 'mathvariant'.
=>begin mathsize 11px style fraction numerator 2 straight pi left parenthesis 4 straight m right parenthesis over denominator straight B left parenthesis 2 straight q right parenthesis end fraction equals space 2 open parentheses fraction numerator 2 πm over denominator Bq end fraction close parentheses space equals space 2 straight T subscript 1 space left parenthesis straight m subscript straight alpha space equals space 4 straight m subscript straight p comma straight q subscript straight alpha equals 2 straight q subscript straight p right parenthesis end style
As begin mathsize 11px style straight r equals mv over Bq end style
So,
begin mathsize 11px style straight r proportional to straight m over straight q end style
Therefore,
=>