Math, asked by rockshreya05, 1 year ago

the ratio of surface area of a sphere and curved surface area of a hemisphere is 9:2 find ratio of their volumes

Answers

Answered by aquialaska
3

Answer:

Ratio of volumes of Sphere and Hemisphere is 27 : 8

Step-by-step explanation:

Given: Ratio of surface are of Sphere and hemisphere = 9 : 2

To find: Ratio of their volume

\frac{Surface\:area\:of\:Sphere}{Surface\:area\:of\:Hemisphere}=\frac{4\pi r^2}{2\pi R^2}

\frac{9}{2}=\frac{2r^2}{R^2}

\frac{9}{4}=\frac{r^2}{R^2}

\frac{r}{R}=\sqrt{\frac{9}{4}}

\frac{r}{R}=\frac{3}{2}

\frac{Volume\:of\:Sphere}{Volume\:of\:Hemisphere}=\frac{\frac{4}{3}\pi r^3}{\frac{2}{3}\pi R^3}

                                   =\frac{r^3}{R^3}

                                   =(\frac{r}{R})^3

                                   =(\frac{3}{2})^3

                                   =\frac{27}{8}

Therefore, Ratio of volumes of Sphere and Hemisphere is 27 : 8

Similar questions