Math, asked by vidhi5086, 1 year ago

the ratio of surface area of a sphere and curved surface area of a hemisphere is 9:2 find ratio of their volumes​

Answers

Answered by mitajoshi11051976
4

Answer :-

Step by step explanation :-

Here we have ratio of surface area of a sphere and curved surface area of a hemisphere is 9:2.

Than,

   \frac{4\pi  {r}^{2} }{3\pi {r}^{2} }   =  \frac{9}{2}  \\  \\   \frac{4 {r}^{2} }{3 {r}^{2} }  =  \frac{9}{2}  \\  \\   \frac{ {r}^{2} }{ {r}^{2} }  =  \frac{27}{8}  \\  \\  \frac{r}{r}  =  \sqrt{ \frac{27}{8} }  \\  \\  \frac{r}{r }  =   \sqrt{ \frac{9 \times 3}{4 \times 2} }  \\  \\   \frac{r}{r}  =  \frac{3 \sqrt{3} }{2  \sqrt{2}  }

Ratio of volume :-

 =  \frac{ \frac{4}{3} \pi {r}^{3} }{ \frac{2}{3} \pi {r}^{3} }  \\  \\  =  \frac{4 \times 3 \times  r \times r \times r }{3 \times 2 \times r \times r \times r}  \\  \\  =  \frac{12 \times  {(3 \sqrt{3}) }^{ 3}  }{6 {(2 \sqrt{2} )}^{3} }  \\  \\  =  \frac{12 \times 3 \sqrt{3} }{6 \times 2 \sqrt{2} }  \\  \\  =  \frac{6 \sqrt{3} }{2  \sqrt{2} }  \\  \\  =  \frac{3 \sqrt{3} }{2}

Answer is 33:2

______________________________

______________________________mark as brainliest answer.

Similar questions