Math, asked by samriddhi2805, 10 months ago

The ratio of the curved surface areas of two cylinders A and B is 2 3. If the ratio of the volumes of A and B is 4 5. find the ratio of the heights of A and B​

Answers

Answered by mysticd
2

 Let \: r, \: R \: are \: radii \: of \:two\:cylinders\\and \: h ,\:H \:are \: heights .

 i )ratio \: of \: curved \: surface \:areas = 2:3

 \frac{C.S.A_{\pink{(first \: cylinder)}}}{C.S.A_{\blue{ (second \: cylider)}}} = \frac{2}{3}

 \implies \frac{ 2\pi r h }{2\pi RH } = \frac{2}{3}

 \implies \frac{  r h }{RH } = \frac{2}{3}

 \implies \frac{   h }{H } = \frac{2R}{3r}\: --(1)

 ii ) Ratio \: of \: volumes = 4:5

 \frac{Volume_{\pink{(first \: cylinder)}}}{Volume_{\blue{ (second \: cylider)}}} = \frac{4}{5}

 \implies \frac{ \pi r^{2} h }{\pi R^{2} H} = \frac{4}{5}

 \implies \frac{  r^{2} h }{R^{2} H} = \frac{4}{5}

 \implies \frac{ r^{2}}{R^{2}} \times \frac{2R}{3r} = \frac{4}{5}\: \blue{ [ From \:(1) ]}

 \implies \frac{2r}{3R} = \frac{4}{5}

 \implies \frac{r}{R} = \frac{4}{5} \times \frac{3}{2}

 \implies \frac{r}{R} = \frac{6}{5}

 \implies \frac{R}{r} = \frac{5}{6} \: --(2)

 Put\:  (2) \: in \: equation (1) , we \:get

 \implies \frac{ h }{H } = \frac{2R}{3r} \\= \frac{2}{3} \times \frac{5}{6} \\= \frac{5}{9}

Therefore.,

 \red{ Ratio \:of \: heights } \green { = 5 : 9 }

•••♪

Similar questions