Math, asked by ipsitasingh13772, 5 months ago

The ratio of the length and breadth of a rectangle is
3:1. If the perimeter is 64 cm, find the dimensions of
the rectangle. (Only iintelligents will ans)​

Answers

Answered by swalla1
1

Answer:

2(3x+x) = 64

2 × 4x = 64

8x = 64

x = 64 ÷ 8

x = 8 cm

Length = 24cm

Breadth = 8 cm

Hope this helps...

Answered by IdyllicAurora
31

Answer :-

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question\;:-}}}

Here the concept of Perimeter of Rectangle has been used. We see we are given the ratio of Length and Breadth of the Rectangle. So their must be a constant x by which the ratio should be multiplied to get the original value. Then we can apply that in the formula of Perimeter of Rectangle.

Let's do it !!

_________________________________________________

Formula Used :-

\\\;\boxed{\sf{Perimeter\;of\;Rectangle\;=\;\bf{2\;\times\;(Length\;+\;Breadth)}}}

_________________________________________________

Solution :-

Given,

» Ratio of length and breadth = 3 : 1

» Perimeter of Rectangle = 64 cm

• Let the constant be 'x'.

Then,

» Length of Rectangle = 3x

» Breadth of Rectangle = 1x

_________________________________________________

~ For the value of x ::

\\\;\;\;\sf{:\Longrightarrow\;\;\;Perimeter\;of\;Rectangle\;=\;\bf{2\;\times\;(Length\;+\;Breadth)}}

\\\;\;\;\sf{:\Longrightarrow\;\;\;64\;=\;\bf{2\;\times\;(3x\;+\;1x)}}

\\\;\;\;\sf{:\Longrightarrow\;\;\;64\;=\;\bf{2\;\times\;(4x)}}

\\\;\;\;\sf{:\Longrightarrow\;\;\;64\;=\;\bf{8x}}

\\\;\;\;\sf{:\Longrightarrow\;\;\;x\;=\;\bf{\dfrac{64}{8}}}

\\\;\;\;\sf{:\Longrightarrow\;\;\;x\;=\;\bf{8}}

Hence, x = 8

Now by applying the value of x in the Length and Breadth, we get,

» Length = 3x = 3(8) = 24 cm

\\\;\underline{\boxed{\tt{Length\;\;of\;\;Rectangle\;\;=\;\bf{24\;\;cm}}}}

» Breadth = x = 8 cm

\\\;\underline{\boxed{\tt{Breadth\;\;of\;\;Rectangle\;\;=\;\bf{8\;\;cm}}}}

_________________________________________________

More to know :-

\\\;\sf{\leadsto\;\;Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\\\;\sf{\leadsto\;\;Area\;of\;Square\;=\;(Side)^{2}}

\\\;\sf{\leadsto\;\;Area\;of\;Circle\;=\;\pi r^{2}}

\\\;\sf{\leadsto\;\;Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\\\;\sf{\leadsto\;\;Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

Similar questions