Chemistry, asked by londan571, 1 year ago

the ratio of the radius of 2nd orbit of Li2+ to that of 3rd orbit of He+ is

Answers

Answered by dsp16
2

Explanation:

this question is from bohr's atomic model check it out for more clear concept

Attachments:
Answered by syed2020ashaels
1

The given question is we have to find the ratio of the radius of the 2nd orbit of Li2+ to that of the 3rd orbit of He+ is

The atomic number of lithium is 3 and helium is 2.

The radius of an orbit is directly proportional to the

r \:  = 0.53 \: x {10}^{ - 10}  \times  \frac{ {n}^{2} }{z}

where n is the orbit number and z is the atomic number.

sor  \alpha  \frac{ {n}^{2} }{z}

r \:   {li}^{ + 2}  \alpha  (\frac{ {2}^{2} }{3} )

The orbit of the lithium is 2nd orbit.

r \:  {he}^{ + }   \alpha  (\frac{ {3}^{2} }{2} )

As we are asked to find the ratio of lithium and helium, we have to divide the radius of lithium by the helium.

 \frac{radius \: of \:  {lithium}^{ + 2} }{radius \: of  {helium}^{ + } }  =  \frac{ \frac{ ({2}^{2} }{3} )}{  (\frac{ {3}^{2} }{2}) }

we have to simplify the above expression by the general method.

 =  \frac{ \frac{4}{3} }{ \frac{9}{2} }

The value will get multiplied.

 \frac{4}{3}  \times  \frac{2}{9}

On multiplying we get

 \frac{8}{27}

On taking the cube root we get,

 \frac{2}{3}

Therefore, the ratio of the radius of the 2nd orbit of Li2+ to that of the 3rd orbit of He+ is 2:3

# spj2

we can find similar questions through the link given below

https://brainly.in/question/6373844?referrer=searchResults

Similar questions