Math, asked by abinayasxa16, 3 months ago

The ratio of the sums of m and n terms of an AP is m²:n². Find the ratio of m,th and n,th term is (2m-1):(2n-1)​

Answers

Answered by amansharma264
71

EXPLANATION.

Ratio of the sum of the m and n terms of an

Ap = m²:n².

To find ratio of mth and nth

(2m - 1) : ( 2n - 1).

Sum of Nth terms of an Ap.

 \sf :  \implies \:  s_{n} \:  =  \dfrac{n}{2}(2a \:  +  \: (n - 1)d)

 \sf :  \implies \:  s_{m} \:  =  \dfrac{m}{2} (2a \: + (m - 1)d) =  {m}^{2}  \\  \\ \sf :  \implies \:  s_{n} \:  =  \dfrac{n}{2} (2a \:  + (n - 1)d) =  {n}^{2}

\sf :  \implies \:  \dfrac{ \dfrac{m}{2} (2a + (m - 1)d)}{ \dfrac{n}{2} (2a + (n - 1)d)}  =  \dfrac{ {m}^{2} }{ {n}^{2} }  \\  \\ \sf :  \implies \:  \:  \frac{2a + (m - 1)d}{2a + (n - 1)d}  =  \frac{m}{n}  \\  \\ \sf :  \implies \: n[2a + (m - 1)d]  = m[2a + (n - 1)d]

 \sf :  \implies \: n[2a + md - d]  = m[2a + nd - d \\  \\ \sf :  \implies \: 2an \:  + mnd \: - nd \:  = 2am \:  + mnd \:  - md \\  \\ \sf :  \implies \: md \:  -  \: nd \:  = 2am \:  -  \: 2an \\  \\ \sf :  \implies \: (m - n)d \:  = 2a(m - n) \\  \\ \sf :  \implies \: d \:  = 2a

\sf :  \implies \:   \dfrac{ s_{m} }{ s_{n} }  =  \dfrac{2a  \:  +  \: (m \:  - 1)d}{2a \:  +  \: (n - 1)d}  \\  \\ \sf :  \implies \:   \dfrac{ s_{m} }{ s_{n} }  \:  =  \frac{2a \:  +  \: (m - 1)2a}{2a \:  +(n - 1)2a }  \\  \\ \sf :  \implies \:   \dfrac{ s_{m} }{ s_{n} }  =  \frac{a(1 + 2m - 2)}{a(1 + 2n - 2)}  \\  \\ \sf :  \implies \:   \dfrac{ s_{m} }{ s_{n} }  =  \frac{2m - 1}{2n - 1}


prince5132: Brilliant Answer !!
amansharma264: Thanku
Answered by ADARSHBrainly
276

Given

  • Ratio of the sums of m and n terms of an AP is m²:n².

To find

  • The ratio of m,th and n,th term is (2m-1):(2n-1)

Solution

We know that :-

 \\ {\sf{\implies{S_n =  \frac{n}{2}(2a + (n - 1)d) }}}

Where S_n= sum of nth term of A.P.

  • n = number if terms.
  • a = first term
  • d = common difference

Thus, Sum of n term = S_n

 \\ {\sf{\implies{S_n =  \frac{n}{2}(2a + (n - 1)d) }}}

and also

Sum of n term = S_m

 \\ {\sf{\implies{S_m =  \frac{m}{2}(2a + (m - 1)d) }}}

It is given that :-

Ratio of sums of m and n terms of an A.P is m² : n².

{\large{\bf{\implies{ \frac{ Sum \:  of  \: m  \: terms} {Sum \:  of  \: n  \: terms }= \frac{ m²}{n²}}}}}

{\large{\sf{\implies{  \frac{  S_m}{S_n }=  \frac{m²}{  n²}}}}}

{\large{\sf{\implies{   \frac{ \frac{m}{2} (2a + (m - 1)d)}{ \frac{n}{2}(2a + (n - 1)d) } =  \frac{ {m}^{2} }{ {n}^{2} }  }}}}

{\large{\sf{\implies{   \frac{ m (2a + (m - 1)d)}{ n(2a + (n - 1)d) } =  \frac{ {m}^{2} }{ {n}^{2} }  }}}}

{\large{\sf{\implies{   \frac{  2a + (m - 1)d}{ 2a + (n - 1)d } =   \frac{n}{m} \times  \frac{ {m}^{2} }{ {n}^{2} }  }}}}

{\large{\bf{\implies{   \frac{  2a + (m - 1)d}{ 2a + (n - 1)d } =   \frac{m}{n}  }}}} \:  \:  \:  \:  \:  \:  \:  \: ......(1)

We need to show that the ratio of m and n term is (2m - 1) : (2n - 1) :-

Finding n^th and m^th terms :-

We know that

{\bf{\implies{a_n = a  + ( n -1 )d }}}

{ \sf{So, n^{nt} \: term = a_n }} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \sf{ = a + (n - 1)d}}

Similarly :-

{ \sf{So, m^{nt} \: term = a_m }} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \sf{ = a + (m- 1)d}}

We need to show that the ratio of m and n term is (2m - 1) : (2n - 1) :-

{\bf{\implies{ \frac{ {m}^{th}  \: term}{ {n}^{th}  \: term}  =  \frac{(2m - 1)}{(2n - 1)} }}}

{\bf{\implies{ \frac{a + (m - 1)d}{ a + (n - 1)d}  =  \frac{(2m - 1)}{(2n - 1)} }}} \:  \: .......(2)

From 1 :-

{\large{\bf{\implies{   \frac{  2a + (m - 1)d}{ 2a + (n - 1)d } =   \frac{m}{n}  }}}} \:  \:  \:  \:  \:  \:  \:  \:

Replacing m with 2m -1 and n with 2n -1

{\bf{\implies{ \frac{ 2a + ((2m - 1) - 1)d}{ 2a + ((2n - 1) - 1)d}  =  \frac{(2m - 1)}{(2n - 1)} }}}

{\bf{\implies{ \frac{ 2a + (2m - 1- 1)d}{ 2a + (2n - 1- 1)d}  =  \frac{(2m - 1)}{(2n - 1)} }}}

{\bf{\implies{ \frac{ 2a + (2m  - 2)d}{ 2a + (2n  - 2)d}  =  \frac{(2m - 1)}{(2n - 1)} }}}

{\bf{\implies{ \frac{ 2a + 2(m  - 1)d}{ 2a +2 (n  - 1)d}  =  \frac{(2m - 1)}{(2n - 1)} }}}

{\bf{\implies{ \frac{ 2(a + (m  - 1)d)}{ 2(a +2 (n  - 1)d)}  =  \frac{(2m - 1)}{(2n - 1)} }}}

{\bf{\implies{ \frac{ a + (m  - 1)d}{ a +2 (n  - 1)d}  =  \frac{(2m - 1)}{(2n - 1)} }}}

{ \underline{ \boxed{ \blue{\bf{\implies{ \frac{ {m}^{th}  \: term \: of \:  A.P }{ {n}^{th}  \: term \: of A.P }  =  \frac{(2m - 1)}{(2n - 1)} }}}}}}

Thus, ratio of mth and nth term of A.P is 2m -1 : 2m - 1

Hence, proved.

Similar questions