The real x and y satisfying simultaneously log8x + log4y2 = 5log8y + log4x2 = 7, then the value of xy equal to -(A) 29 (B) 212 (C) 218 (D) 224
Answers
Answered by
0
is there any base given
Answered by
0
Answer:
xy = +1
Step-by-step explanation:
Given that, log8x+log4y2=5
log8y+log4x2=7
So,log8x+log4y2=7
⇒log23x+log22y2=7
⇒13log2x+12log2y2=7
⇒log2(x)13+log2(y2)12=7
⇒log2[(x)13(y2)12]=7
⇒log2[(x)13y]=7
⇒(x)13y=27
⇒xy3=221 .....(1)And,
5log8y+log4x2=7
⇒5log23y+log22x2=7
⇒53log2y+12log2x2=7
⇒log2(y)53+log2(x2)12=7
⇒log2[(y)53(x2)12]=7
⇒log2[(y)53x]=7
⇒(y)53x=27
⇒y5x3=221 .....(2)Equating equation(2)and (1),
y2x2=1
⇒xy=±1
Similar questions