The relation between x and y so that the point (x,y) is equidistant from the points (-4,-4) and (-2,4) is : (a) x +4y=3 (b) x -4y+3=0 (c) x +4y+3=0 (d) x -4y=3
Answers
Answered by
1
Answer:
Solution:
\textsf{Let the given points A(-4,4), B(-2,4) and P(x,y)}Let the given points A(-4,4), B(-2,4) and P(x,y)
\textsf{As per given data,}As per given data,
\mathsf{PA=PB}PA=PB
\mathsf{\sqrt{(x+4)^2+(y-4)^2}=\sqrt{(x+2)^2+(y-4)^2}}
(x+4)
2
+(y−4)
2
=
(x+2)
2
+(y−4)
2
\textsf{Squaring on bothsides, we get}Squaring on bothsides, we get
\mathsf{(x+4)^2+(y-4)^2=(x+2)^2+(y-4)^2}(x+4)
2
+(y−4)
2
=(x+2)
2
+(y−4)
2
\mathsf{(x+4)^2=(x+2)^2}(x+4)
2
=(x+2)
2
\mathsf{x^2+16+8x=x^2+4+4x}x
2
+16+8x=x
2
+4+4x
\mathsf{x^2+16+8x=x^2+4+4x}x
2
+16+8x=x
2
+4+4x
\implies\mathsf{4x+12=0}⟹4x+12=0
\therefore\boxed{\mathsf{x+3=0}}∴
x+3=0
\textsf{whch is the required relation}whch is the required relation
Similar questions