Physics, asked by asiyakhatoon191081, 8 months ago

The resistance of a wire is 15 ohm, the wire is drawn out, so that it's length becomes 3 times the original length. Calculate the new resistance in this situation​

Answers

Answered by amitkumar44481
31

AnsWer :

135Ω

To FinD :

Calculate the new resistance in this situation

SolutioN :

We have,

  • 15Ω resistance.
  • Wire cut so that it's length becomes 3 times the original length.

Now,

  • We can also write it's relation.
  • When drawn a wire 3 times the original then, length of wire be 3L and Area become A / 3.

Let,

  • Original Area of wire be A
  • change after wire drawn out be A'
  • Original Length of wire be L
  • Change after wire drawn out be L'

\setlength{\unitlength}{1mm}\begin{picture}(5,5)   \put(1,2){\line(2,0){15}}\put(1,4){\line(2,0){15}}\put(4.5,-2){$\tt{L\:,\: A}$}\qbezier(1,2)(0,3)(1,4)\qbezier(16,2)(17,3)(16,4)\end{picture}

We know,

 \tt \dagger \: \:  \:  \:  \: \boxed{\tt{R = \rho \dfrac{L}{A}} }

✐ For Original Wire :

 \tt \dagger \: \:  \:  \:  \: R = \rho \dfrac{L}{A}  \:  \:  \:  \:  \:  - (1)

✐ After Wire is drawn out.

 \tt \dagger \: \:  \:  \:  \: R' = \rho \dfrac{L'}{A'}  \:  \:  \:  \:  \:  - (2)

☛ By Equation ( 1 ) and ( 2 )

 \tt \dagger \: \:  \:  \:  \:  \dfrac{ R'}{R}=  \frac{ \rho \dfrac{L'}{A'}}{\rho \dfrac{L}{A}}

 \tt \dagger \: \:  \:  \:  \:  \dfrac{ R'}{R}=   \dfrac{L'}{A'}  \times \dfrac{A}{L}

 \tt  \tt  : \implies  \dfrac{ R'}{R}=   \dfrac{A}{A'}  \times \dfrac{L'}{L}

 \tt  \tt  : \implies \dfrac{ R'}{R}=   \dfrac{3}{1}  \times \dfrac{3}{1}

 \tt  : \implies\dfrac{ R'}{R}=  9

 \tt  : \implies\dfrac{ R'}{15}=  9

 \tt  : \implies R'=  9 \times 15.

 \tt  : \implies R'= 135\Omega.

Therefore, the value of new resistance be 135Ω.

\rule{200}3

MorE InformatioN :

R = ρ L / A.

Where as,

  • ( R ) Resistance.
  • ( ρ ) Resistivity
  • ( L ) Length.
  • ( A ) Area.

Anonymous: Good:)
mddilshad11ab: Perfect
amitkumar44481: Thanks bhai :-)
BloomingBud: Nice explanation
amitkumar44481: Thanks :-)
Answered by ItzDeadDeal
2

AnsWer :

135Ω

To FinD :

Calculate the new resistance in this situation

SolutioN :

We have,

15Ω resistance.

Wire cut so that it's length becomes 3 times the original length.

Now,

We can also write it's relation.

When drawn a wire 3 times the original then, length of wire be 3L and Area become A / 3.

Let,

Original Area of wire be A

change after wire drawn out be A'

Original Length of wire be L

Change after wire drawn out be L'

\setlength{\unitlength}{1mm}\begin{picture}(5,5) \put(1,2){\line(2,0){15}}\put(1,4){\line(2,0){15}}\put(4.5,-2){$\tt{L\:,\: A}$}\qbezier(1,2)(0,3)(1,4)\qbezier(16,2)(17,3)(16,4)\end{picture}

We know,

\tt \dagger \: \: \: \: \: \boxed {\tt \pink{R = \rho \dfrac{L}{A}} }† </p><p>

✐ For Original Wire :

\tt \dagger \: \: \: \: \: R = \rho \dfrac{L}{A} \: \: \: \: \: - (1)†R=ρ </p><p>

✐ After Wire is drawn out.

\tt \dagger \: \: \: \: \: R' = \rho \dfrac{L'}{A'} \: \: \: \: \: - (2)</p><p>

☛ By Equation ( 1 ) and ( 2 )

\tt \dagger \: \: \: \: \: R' = \rho \dfrac{L'}{A'} \: \: \: \: \: - (2)

</p><p>\tt \dagger \: \: \: \: \: \dfrac{ R'}{R}= \dfrac{L'}{A'} \times \dfrac{A}{L}† </p><p>

</p><p>\tt \tt : \implies \dfrac{ R'}{R}= \dfrac{A}{A'} \times \dfrac{L'}{L}</p><p>

\tt \tt : \implies \dfrac{ R'}{R}= \dfrac{3}{1} \times \dfrac{3}{1}

\tt : \implies\dfrac{ R'}{R}= 9

\tt : \implies\dfrac{ R'}{15}= 9

\tt : \implies R'= 9 \times 15.

\tt : \implies R'= 135\Omega.

✬ Therefore, the value of new resistance be 135Ω.

MorE InformatioN :

R = ρ L / A.

Where as,

( R ) Resistance.

( ρ ) Resistivity

( L ) Length.

( A ) Area.

Similar questions