Physics, asked by kashaikh07, 9 months ago

The resultant of P and Q is R. If Q is doubled, R is doubled; when Q is reversed, R is again doubled. Find P: Q: R. (Vectors, Class 11)

Answers

Answered by topwriters
6

Ratio of P:Q: R = 1 : 0.05 : 0.04

Explanation:

Given:  The resultant of P and Q is R. If Q is doubled, R is doubled; when Q is reversed, R is again doubled.

Find: P: Q: R vectors.

Solution:  

Using the formula of vectors, we get:

R² = P²  + Q²  +2|P||Q|Cosθ ---------- (1)

Q is doubled, R is doubled, so:  

(2R)² = P² + (2Q)² +2|P||2Q|Cosθ

Solving, we get:  4R² = P² + 4Q² +4|P||Q|Cosθ  ---------- (2)

Q is reversed, R is again doubled, so:

(2R)² = P² + (-Q)² +2|P||-Q|Cos(180-θ)

Solving, we get:  

4R² = P² + Q² -2|P||Q|Cosθ  ---------- (3)

  • Reversing a vector means changing its direction by 180.
  • |-Q| = |Q|
  • Cos(180-θ) = -Cosθ

Subtracting (3) from (2), we get:

0 = 3Q² + 6|P||Q|Cosθ

Assuming Q as non-zero vector,

-3|Q| = 6|P|Cosθ

|Q| = -2|P|Cosθ  ---------- (4)

Squaring both sides, Q² = 4P².(Cosθ)²  ---------- (5)

Subtracting (1) from (2), we get:

3R² = 3Q² + 2|P||Q|Cosθ  ----------(6)

Substituting the value obtained from (5) and (4) in (6):

3R² = 3[4P²(Cosθ)²] + 2|P|[-2|P|Cosθ]Cosθ

3R² = 12P²(Cosθ)² - 4P²(Cosθ)²

3R² = 8P²(Cosθ)² ---------- (7)

Substituting the values of R² and Q², obtained from (4) & (5) in (1):

[8P²(Cosθ)²]3 = P² + [4P²(Cosθ)²] + 2|P|[-2|P|Cosθ]Cosθ

16P²(Cosθ)² = P² + 4P²(Cosθ)² – 4P²(Cosθ)²

16P²(Cosθ)² = P²

Assuming P as non-zero vector,

(Cosθ)^2 = 1/16  ---------- (8)

We know from (5), Q² = 4P²(Cosθ)²

From (7), R² = [8P²(Cosθ)²]/3

Put value of (Cosθ)² obtained from (8), we get:

Q² = 1/4*(P²)

R² = 1/6*(P²)

So P² : Q² : R² = P² : P²/4 : P²/6  = 1: 1/4 : 1/6 = 1: 0.25 : 0.16

Ratio of P:Q: R = 1 : 0.05 : 0.04

Similar questions