Physics, asked by rekhagvvun, 4 months ago

The resultant of two concurrent forces is
perpendicular to the smaller force and
angle between the forces is 120° if the
bigger force is 60 N, find the smaller
force is
40 N
30 N
20 N
10N​

Answers

Answered by yalamanchiujwal4
1

Answer:

I think twenty newtons wills come see

Answered by DARLO20
6

\Large\bf{\color{indigo}GiVeN,} \\

✅ We solve this problem in vector format.

\bf\pink{Let,} \\

  • \bf{\vec{F}_1} is the smaller force vector.

  • \bf{\vec{F}_2} is the larger force vector.

  • The resultant force vector \bf{\vec{F}_R} is making an angle 90° with the smaller force \bf{\vec{F}_1}.

The resultant force vector \bf{\vec{F}_R} makes an angle,

α = 120° - 90° = 30°, with the larger force vector \bf{\vec{F}_2}, as shown in the diagram.

\Large\bf{\color{coral}To\:FiNd,} \\

  • The smaller force.

\Large\bf{\color{lime}CaLcUlAtIoN,} \\

\bf\blue{From\:right\:angle\:\triangle{ADC},} \\

:\implies\:\:\bf{\sin{\alpha}\:=\:\dfrac{Opposite\:side}{Adjacent\:side}\:} \\

:\implies\:\:\bf{\sin{\alpha}\:=\:\dfrac{CD}{AC}\:} \\

\bf\red{━─━─━─━─━─━─━─━─━─━─━─━─━─━─━─} \\

\longrightarrow\:\:\bf{AC\:=\:magnitude\:of\:\vec{F}_2\:=\:60N} \\

\longrightarrow\:\:\bf{CD\:=\:AB\:=\:magnitude\:of\:\vec{F}_1} \\

\bf\red{━─━─━─━─━─━─━─━─━─━─━─━─━─━─━─} \\

:\implies\:\:\bf{\sin{\alpha}\:=\:\dfrac{\mid\vec{F}_1\mid}{\mid\vec{F}_2\mid}\:} \\

:\implies\:\:\bf{\sin{30°}\:=\:\dfrac{\mid\vec{F}_1\mid}{\mid\vec{F}_2\mid}\:} \\

:\implies\:\:\bf{\mid\vec{F}_1\mid\:=\:\mid\vec{F}_2\mid\times{\sin{30°}}} \\

:\implies\:\:\bf{\mid\vec{F}_1\mid\:=\:60\times{\dfrac{1}{2}}} \\

:\implies\:\:\bf\purple{\mid\vec{F}_1\mid\:=\:30\:N} \\

(b) The smaller force is 30 N.

Attachments:
Similar questions