Physics, asked by Vedu08, 1 year ago

The resultant of two vectors P and Q is R.If Q is doubled then the new resultant vector is perpendicular to P.Then magnitude of R is-

Answers

Answered by GOZMIt
256

esultant of two forces P and Q is R

R = P + Q

|R| = sqrt(P^2 + Q^2 + 2PQCosθ)

When Q is doubled new resultant R’ is

R’ = P + 2Q

Since it is perpendicular to P, dot product of R’ and P is zero

(R’).(P) = 0

(P + 2Q).(P) = 0

P^2 + 2PQCosθ = 0

(Dot product of P and P is P^2 and that of P and 2Q is 2PQCosθ)

Cosθ = -P/(2Q)

R = sqrt(P^2 + Q^2 + 2PQCosθ)

R = sqrt(P^2 + Q^2 + 2PQ*(-P/(2Q))

R = sqrt(P^2 + Q^2 - P^2)

R = Q

Answered by VaibhavSR
2

Answer:

|\overrightarrow{\mathrm{R}}|=|\overrightarrow{\mathrm{Q}}|

Explanation:

Step 1: Initial resultant between two vectors [ Fig. 1]

Resultant of \vec{P}and \vec{Q},

|\overrightarrow{\mathrm{R}}|^{2}=|\overrightarrow{\mathrm{P}}|^{2}+|\overrightarrow{\mathrm{Q}}|^{2}+2|\overrightarrow{\mathrm{P}}||\overrightarrow{\mathrm{Q}}| \cos \theta

Step 2: Dot product between new resultant and \vec{P} [Fig. 2]

When \overrightarrow{\mathrm{Q}} is doubled, new resultant, \overrightarrow{\mathrm{R}}_{1}=\overrightarrow{\mathrm{P}}+2 \overrightarrow{\mathrm{Q}} becomes perpendicular to\overrightarrow{\mathrm{P}}

\therefore \overrightarrow{\mathrm{R}}_{1} \cdot \overrightarrow{\mathrm{P}}=0

\Rightarrow(\overrightarrow{\mathrm{P}}+2 \overrightarrow{\mathrm{Q}}) \cdot \overrightarrow{\mathrm{P}}=0

\Rightarrow|\overrightarrow{\mathrm{P}}|^{2}+2|\overrightarrow{\mathrm{P}}||\overrightarrow{\mathrm{Q}}| \cos \theta=0

\Rightarrow \cos \theta=\frac{-|\overrightarrow{\mathrm{P}}|}{2|\overrightarrow{\mathrm{Q}}|}

Step 3: Solving equation

Putting value of \cos \theta in equation (1)

|\overrightarrow{\mathrm{R}}|^{2}=|\overrightarrow{\mathrm{P}}|^{2}+|\overrightarrow{\mathrm{Q}}|^{2}+2|\overrightarrow{\mathrm{P}}||\overrightarrow{\mathrm{Q}}|\left[\frac{-|\overrightarrow{\mathrm{P}}|}{2|\overrightarrow{\mathrm{Q}}|}\right]

\Rightarrow|\overrightarrow{\mathrm{R}}|^{2}=|\overrightarrow{\mathrm{Q}}|^{2}

\Rightarrow|\overrightarrow{\mathrm{R}}|=|\overrightarrow{\mathrm{Q}}|

#SPJ6

Attachments:
Similar questions