Physics, asked by toufiqueshahedi31, 10 months ago

the resultant of vector A and vector B is perpendicular to vector B.what is the angle between a and b

Answers

Answered by shadowsabers03
6

The angle made by the resultant of the two vectors \vec{\sf{A}} and \vec{\sf{B}} with \vec{\sf{B}} is given by,

\longrightarrow\alpha=\tan^{-1}\left(\dfrac{\mathsf{A}\sin\theta}{\mathsf{B+A\cos\theta}}\right)\quad\quad\dots\sf{(1)}

where \theta is the angle between them.

Here the resultant is perpendicular to \vec{\sf{B}} so it makes 90° with it.

\sf{\longrightarrow\alpha=90^o}

From (1),

\longrightarrow\tan^{-1}\left(\dfrac{\mathsf{A}\sin\theta}{\mathsf{B+A\cos\theta}}\right)=\sf{90^o}

\longrightarrow\dfrac{\mathsf{A}\sin\theta}{\mathsf{B+A\cos\theta}}=\tan\sf{90^o}

\longrightarrow\dfrac{\mathsf{A}\sin\theta}{\mathsf{B+A\cos\theta}}=\mathsf{\dfrac{1}{0}}

Equating the denominators,

\sf{\longrightarrow B+A\cos\theta=0}

\sf{\longrightarrow \cos\theta=-\dfrac{B}{A}}

\sf{\longrightarrow\underline{\underline{\theta=\cos^{-1}\left(-\dfrac{B}{A}\right)}}}

Similar questions