Math, asked by Kswamini, 11 months ago

The root of question(q-r)x2+ (r-p)x+(p-q)=0 are ?

Answers

Answered by Anonymous
30

Question:

Find the roots of the given equation;

(q-r)x^2 + (r-p)x + (p-q) = 0

Answer:

x = 1 and (p-q)/(q-r)

Solution:

We have;

=> (q-r)x^2 + (r-p)x + (p-q) = 0

=> (q-r)x^2 - (p-r)x + (p-q) = 0

=> (q-r)x^2 - (p-r+q-q)x + (p-q) = 0

=> (q-r)x^2 - {(q-r)+(p-q)}x + (p-q) = 0

=> (q-r)x^2 - (q-r)x - (p-q)x + (p-q) = 0

=> (q-r)x(x-1) - (p-q)(x-1) = 0

=> (x-1){(q-r)x - (p-q)} = 0

Case(1):

If (x-1) = 0

=> x = 1

Case(2):

If {(q-r)x - (p-q)} = 0

=> (q-r)x = (p-q)

=> x = (p-q)/(q-r)

or x = (q-p)/(r-q)

Hence,

The roots of the given equation are :

x = 1 and (p-q)/(q-r)

Answered by Anonymous
11

Question :-

The roots of this quadratic equation are -

  \small \: \green{(q - r) {x}^{2}   +  (r - p)x + (p - q) = 0}

Answer:-

 \implies \:    \green{\: 1 \: } \:  \: and \:   \red{\frac{(p - q)}{(q - r)} } \\

Step by step explanation :-

Given quadratic equation is

 \small \red{(q - r) {x}^{2}  + (r - p)x + (p  -  q) = 0}

We can write ,

 \small \: (q - r) {x}^{2}  + (r - p + q - q)x + (p  -  q) = 0 \\  \\ \small (q - r) {x}^{2}    -   (q - r)x - (p - q)x + (p - q) = 0 \\

 \small \: (q - r)x(x - 1) - (p - q)(x - 1) = 0 \\  \\ \small \: (x - 1)[(q - r)x - (p - q)] = 0 \\  \\

 \star \: case \: (1) \\  \\  \implies \:  \small \: (x - 1) = 0 \\  \\  \implies \: \   \red{\boxed{\small  x = 1 }}\\  \\ \star  \: case \: (2) \: \\  \\  \implies \:  \red{\small \: (q - r)x - (p - q) = 0 }\\  \\  \implies \:  \small \: (q - r)x = (p - q) \\  \\  \implies \:  \red{ \boxed{ \small \: x =  \frac{(p - q)}{(q - r)} }}

Similar questions