Math, asked by hrudaybhor2911, 2 months ago

the root of the determinant equation (in x) |a a x||m m m||b x b|​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{\left|\begin{array}{ccc}a&a&x\\m&m&m\\b&x&b\end{array}\right|}

\textbf{To find:}

\textsf{Roots of the determinant}

\mathsf{\left|\begin{array}{ccc}a&a&x\\m&m&m\\b&x&b\end{array}\right|}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\left|\begin{array}{ccc}a&a&x\\m&m&m\\b&x&b\end{array}\right|}

\mathsf{=m\left|\begin{array}{ccc}a&a&x\\1&1&1\\b&x&b\end{array}\right|}

\textsf{By interchanging rows, this can be written as}

\mathsf{=m\left|\begin{array}{ccc}1&1&1\\b&x&b\\a&a&x\end{array}\right|}

\mathsf{=m[1(x^2-ab)-1(xb-ab)+1(ab-ax)]}

\mathsf{=m[x^2-ab-xb+ab+ab-ax]}

\mathsf{=m[x^2--xb+ab-ax]}

\mathsf{=m[x(x--b)-a(x-b)]}

\mathsf{=m(x-a)(x-b)}

\mathsf{Now,}

\mathsf{\left|\begin{array}{ccc}a&a&x\\m&m&m\\b&x&b\end{array}\right|=0}

\implies\mathsf{m(x-a)(x-b)=0}

\implies\boxed{\mathsf{x=a,b}}

\therefore\underline{\textsf{Roots of the given determinant are a and b}}

\textbf{Find more:}

Similar questions