Math, asked by tirunagarimadhusudha, 9 months ago

The roots of a quadratic equation x2 - 4px
+ 4p2 - q2 = 0 are​

Answers

Answered by MaheswariS
5

\textbf{Given:}

x^2-4p\,x+(4p^2-q^2)=0

\textbf{To find:}

\text{The roots of the given quadratic equation}

\textbf{Solution:}

\text{Consider,}

x^2-4p\,x+(4p^2-q^2)=0

\text{Here,}\;a=1,\;b=-2p,\;c=4p^2-q^2

\text{Then, the roots are}

\bf\,x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

x=\dfrac{4p\pm\sqrt{(-4p)^2-4{\times}1{\times}4p^2-q^2}}{2(1)}

x=\dfrac{4p\pm\sqrt{16p^2-16p^2+4q^2}}{2}

x=\dfrac{4p\pm\sqrt{4q^2}}{2}

x=\dfrac{4p\pm\,2q}{2}

x=2p\pm\,q

\textbf{Answer:}

\textbf{The roots are}

\bf\,2p+q\;\&\;2p-q

Find more:

Using the quadratic formula to solve 5x = 6x2 – 3, what are the values of x

https://brainly.in/question/14911682

Using the quadratic formula, solve the equation a square b square x square - (4b power 4-3apower4)x-12a square b square =0

https://brainly.in/question/5074987

A(x^2 + 1) = (a^2+ 1) x, a + 0 solve by formula method​

https://brainly.in/question/16238292

Similar questions