The roots of the equation (b-c) x2 +2 (c-a)x +(a-b)=0 are always real and distinct
Answers
Answered by
4
Solution:
Compare (b-c)x²+2(c-a)x+(a-b)=0 with Ax²+Bx+C=0, we
get
A = (b-c), B = 2(c-a), C=(a-b)
Discreminant (D) > 0
[ Since , roots are real and
distinct ]
B²-4AC > 0
=> [2(c-a)]² -4(b-c)(a-b)>0
=> 4(c²+a²-2ac)-4(ab-b²-ac+bc)>0
=> c²+a²-2ac-ab+b²+ac-bc>0
=> a²+b²+c²-ab-bc-ac>0
••••
Similar questions