Math, asked by ayushsethi5519, 4 months ago

The second order derivative of log(log x) will be​

Answers

Answered by samykuv
1

Answer:

let y= log(logx)

y1=1/x log x

y2= -(1+logx)/(x+logx)^

Answered by aryan073
8

Given :

⇒Y=log(logx)

To find :

⇒The second order derivative of log(logx)=?

Solution :

Consider a function y=f(x) where f(x) is a polynomial .

 \green \bigstar \boxed{ \red{ \tt{y = log(logx)}}}

⇒Now, Differentiating both side with respect to x.

  \\ \implies \sf \:  \:  \frac{dy}{dx}  =  \frac{d(log(logx))}{dx}  \\  \\  \ \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{1}{logx}  \times  \frac{d(logx)}{dx}  \\  \\   \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{1}{logx}  \times  \frac{1}{x}  \\  \\  \\  \implies \boxed{ \red{ \sf{ \frac{dy}{dx}  =  \frac{1}{x.logx} }}}

⇒Again Differentiating with respect to x :

 \\  \:  \implies \sf \:  \frac{dy}{dx} \bigg( \frac{dy}{dx}  \bigg) =  \frac{d}{dx}  \bigg( \frac{1}{x.logx}  \bigg) \\  \\

  \pink \bigstar \color{blue} \: \boxed{ \bf{ \red{by \: using \: quotient \: rule : }}}

 \\  \\  \implies \sf \:  \frac{ {d}^{2}y }{ {dx}^{2} }  =  \frac{ \frac{d(1)}{dx}(x.logx) -  \frac{d(x.logx)}{dx} \times 1  }{ {(x.logx)}^{2} }  \\  \\  \\  \implies   \sf\frac{ {d}^{2} y}{ {dx}^{2} }  =  \frac{0.(x.logx) -  \frac{d(x.logx) \times 1}{dx} }{ {(x.logx)}^{2} }  \\  \\  \\  \implies \sf \:  \frac{ {d}^{2}y }{ {dx}^{2} }  =  \frac{  \frac{ - d(x.logx)}{dx} }{ {(x.logx)}^{2} }  \\  \\

 \pink \bigstar \color{blue} \boxed{ \bf \red{by \: using \: product \: rule : }}

 \\  \implies \sf \:  \frac{ {d}^{2}y }{ {dx}^{2} }  =  \frac{ -  \bigg \{ \frac{ d(x) }{dx} logx +  \frac{d(logx)}{dx} .x \bigg \}}{ {(x.logx)}^{2} }  \\  \\  \\  \implies \sf \:  \frac{ {d}^{2} y}{ {dx}^{2} }  =  \frac{ \bigg \{1.logx +  \frac{1}{x}  \times x \bigg \}}{ {(x.logx)}^{2} }  \\  \\  \\  \implies \sf \:  \frac{ {d}^{2}y }{ {dx}^{2} }  =  \frac{ -  \bigg \{logx + 1 \bigg \}}{ {(x.logx)}^{2} }  \\  \\  \\  \implies \sf  \boxed {\bf{  \frac{ {d}^{2} y}{ {dx}^{2} }  =  \frac{ -  \bigg \{ logx + 1 \bigg \}}{ {(x.logx)}^{2} } }}

Thus ,

  \red \bigstar\bf \:  \: the \: second \: order \: derivative \: is \:  \\  \boxed{ \red {\bf{ \frac{ {d}^{2}y }{ {dx}^{2} } =  \frac{ -  \bigg \{logx + 1 \bigg \}}{ {(x.logx)}^{2} } }}}

Formulas :

\pink\bigstar\green{\bf{Using \: Quotient \: Rule :}}

As, \boxed{\sf{\bigg(\dfrac{u}{v}\bigg)'=\dfrac{u'v-v'u}{v^{2}}}}

where u =1 and v=xlogx

\\ \pink\bigstar\green{\bf{Using \: product \: Rule : \: in \: xlogx}}

\boxed{\sf{(uv') =u'v+uv'}}

Similar questions