Math, asked by Alexa4431, 10 months ago

The second term of the ap is 13 and 5th term is 25,then 7th term is​​

Answers

Answered by Anonymous
48

\rule{250}3

\huge\sf\red{Given\::}

\leadsto\:\sf a_{2} = a + d

\leadsto\:\sf a_{5} = a + 4d

\leadsto\:\sf a + d = 13_______①

\leadsto\:\sf a + 4d = 25 _______②

\rule{250}3

\huge\sf\pink{Solution\::}

\sf\orange{From\: equation\:(1)\:\&\:(2)\::}

\implies\sf a + 4d = 25

\implies\sf a + d = 13

\implies\sf 3d = 12

\implies\sf d =\dfrac{\cancel{12}}{\cancel{3}}

\implies\sf d\:=\;4

\rule{150}2

\small\sf\purple{Substituting\:x\: value\:in\; Equation\;(1)}

\longrightarrow\:\sf a + d = 13

\longrightarrow\:\sf a + 4 = 13

\longrightarrow\:\sf a = 13 - 4

\longrightarrow\:\sf a = 9

\rule{150}2

\small\sf\blue{Finding\: 7^{th}\: Term}

\dashrightarrow\:\sf a_{7} = a + 6d

\dashrightarrow\:\sf a_{7} = a + 6(4)

\dashrightarrow\:\sf a_{7} = 9 + 24

\dashrightarrow\:\sf a_{7} \:=\: 33

\small\bold{\underline{\boxed{\sf{\green{Hence,\:7th\;Term\:of\;the\;Given\;AP\;is \;33.}}}}}

\rule{250}3

Answered by kotiyal7150
0

Answer:

acc. to question

a+d = 13

a+4d = 25..

then by solving it..

d=4 ( a+ d=13)

a=9 (a+4d=25) a cancle with a..... d-4d = -3d... 13-25=-12

therefore - and - sign cancel.. therefore d= 12/3=4

after getting valur of d we can easily find value if a...... after getting both the value we can find the 7th term.. by a+6d=9+6*4 = 33..

answer = 33

Similar questions