Math, asked by anjanisiri79, 1 year ago

the shadow of a tower when the angle of elevation of sun is 45 degrees is found to be 10m longer than when it was 60degrees.find height of tower

Answers

Answered by dwipendukundu210
1
the shadow of a tower when the angle of elevation of sun is 45 degrees is found to be 10m longer than when it was 60degrees.find height of tower
Answer:-
in:- (image)
Attachments:
Answered by Anonymous
49

\large{\underline{\bf{\pink{Answer:-}}}}  

  ✰ height of the tower is 23.66m

\large{\underline{\bf{\blue{Explanation:-}}}}   

  \large{\underline{\bf{\green{Given:-}}}}

✰ Angle of elevation of sun = 45°

✰ shadow is found 10m when the angle of elevation of sun is 60°

\large{\underline{\bf{\green{To\:Find:-}}}}

✰ we need to find the height of the tower.

\huge{\underline{\bf{\red{Solution:-}}}}  

  Let AB be the tower Let AC and AD be the shadows when the angles of elevation of sun are 60° and 45°

\angle\:ACB=60\degree\:,\:\angle\:ADB=45\degree,

\angle\:DAB=90\degree\:,\:and\:CD=10m

Let AB = h meters and AC = x meters.In right angled triangle∆ CAB,

:\implies\:\frac{AC}{AB}=cot 60\degree

:\implies\:\pink{cot 60\degree= \frac{1}{\sqrt{3}}}

:\implies\:\frac{x}{h}=\frac{1}{\sqrt{3}}

:\implies\:x=\frac{h}{\sqrt{3}}........(1

In right angled triangle∆DAB

\frac{AD}{AB}=cot 45\degree

:\implies\:\pink{cot 45\degree= {1}}

:\implies\:\frac{x+10}{h}=1

:\implies\:x+10=h:\implies\:x=h- 10.........(2)

Substituting the value of x from (i) in (ii)

:\implies\:\frac{h}{\sqrt{3}}=h-10

:\implies\:h=\sqrt{3}h-10\sqrt{3}

:\implies\:(\sqrt{3}-1)h=10\sqrt{3}

:\implies\:\frac{10\sqrt{3}}{(\sqrt{3}-1)}

Rationalising the denominator:-

:\implies\:h=[\frac{10\sqrt{3}}{(\sqrt{3}-1)}\times\frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}]

:\implies\:h= 5\sqrt{3}(\sqrt{3}+1)

:\implies\:h=15+5\sqrt{3}

:\implies\:h=(5+5\times1.732)=(15+8.66)

:\implies\:\bf\purple{h= 23.66}

Hence , the height of the tower is 23.66m.

━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions