Math, asked by kristinedalogdog11, 10 months ago

The shadow of the pole is 5m long when the angle elevation of the sun is 60. Find the length of the shadow when the angle of elevation of the sun is 45

Answers

Answered by niharchelamakuri9492
0

Answer:

tan 60=x/5

tan 45 =x/y

y=tan45/x

=> y= tan45/5tan60

=> y =1/5×3^1/2

Answered by BrainlyConqueror0901
11

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Length\:of\:shadow=}5\sqrt{3}\:m}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about The shadow of the pole is 5m long when the angle elevation of the sun is 60.

• We have to find the length of the shadow when the angle of elevation of the sun is 45.

 \green{\underline \bold{Given :}} \\ : \implies \text{Angle\:of\:elevation\:first=}60^{\circ}\\\\ :\implies \text{Shadow\:of\:pole=5\:m}\\\\  : \implies \text{Angle\:of\:elevation\:second=}45^{\circ}\\ \\ :\implies \text{Shadow\:of\:pole=5\:m} \\ \\   \red{\underline \bold{To \: Find:}} \\ : \implies \text{Length\:of\:shadow= ?}

• Accroding to given question :

 \bold{In \:  \triangle \: ABC} \\   : \implies tan \:  \theta =  \frac{\text{Perpendicular}}{\text{Base}} \\  \\  : \implies  tan \: 60^{\circ}=  \frac{AB}{BC}  \\  \\   : \implies  \sqrt{3} =  \frac{AB}{5}   \\  \\ \green{ : \implies AB=5\sqrt{3}\:m}

 \bold{In \: \triangle \: ABD} \\   : \implies tan \theta  =  \frac{p}{b} \\   \\   : \implies  tan \: 45 ^{ \circ}  =  \frac{AB}{BD}  \\  \\   : \implies 1 =  \frac{5 \sqrt{3} }{BD}  \\  \\   \green{\implies  \text{BD= 5 }\sqrt{3} m}

Attachments:
Similar questions