Math, asked by jaykaant, 10 months ago

The shape of a garden is rectangular in the middle and semi circular at the ends as shown in the diagram.Find the area and perimeter of the garden ​

Attachments:

Answers

Answered by StarrySoul
245

Solution :

First refer to the attachment.

Given the garden is semi-circular at end.

 \rm \: Diameter  \: of \:  semi-circle = 7 m

 \rm \: Radius \: of \:  semi-circle =  \dfrac{7}{2}  = 3.5 \: m

Since,It is semi-circle from both sides. Area would be :

 \bold{ \large{\boxed{\sf{Area = \blue{\: 2( \frac{1}{2} \pi {r}^{2}) }}}}}

 \hookrightarrow \sf \: \pi {r}^{2}  =  \dfrac{22}{7}  \times 3.5

 \hookrightarrow \sf \:  \dfrac{22}{7}  \times  \dfrac{35}{10}  \times  \dfrac{35}{10}

 \hookrightarrow \large \boxed{ \sf \: 38.5 {m}^{2} }

Now,Perimeter of 2 semi-circles

 \bold{ \large{\boxed{\sf{Perimeter = \red{\: 2\pi \: r }}}}}

 \hookrightarrow \sf \: 2 \times  \dfrac{22}{7}  \times 3.5

 \hookrightarrow \sf \large \boxed{ \sf \: 22 \: m}

Let's move to the rectangular part now :

 \sf \: Length \: of \: rectangle = 20 - (3.5 + 3.5) \: m

 \sf \: Length \:  = 13 \: m

 \sf \: Breadth \: of \: rectangle \:  = 7 \: m

 \bold{ \large{\boxed{\sf{Area = \purple{length \:  \times  \: breadth}}}}}

 \hookrightarrow \sf \: (13 \times 7) {m}^{2}

 \sf \large \boxed{  \sf \: 91 \: {m}^{2}  }

Now,Area of Garden =

 \sf \: 38.5 + 91 =  \boxed{ \red{ \sf129.5 {m}^{2} }}

Perimeter of the Garden =

2 × Circumference of Semi-Circle + 2 × length of rectangle

\hookrightarrow\: \sf 2 \times 11 \times +  2 \times 13

 \sf \: 22 + 26 =  \boxed{ \red{ \sf 48 m }}

Attachments:

EliteSoul: Awesome!
StarrySoul: Thank you! :D
Answered by sahildhande987
399

\huge{\boxed{\underline{\tt{\blue{Answer}}}}}

____________________________________

Given:

★ Diameter = 7 m

so radius = 3.5m

★ length of garden = 20m

_____________________________________

To find

Area and Perimeter of the garden

_____________________________________

SoluTion:

\huge{\green{\boxed{Perimeter}}}

Side of Rectangle

 20 - [3.5 + 3.5] \\ \\ \implies 20 - 7 \\ \leadsto\boxed{13m}

Now We need circumference of the semi circles

These Two semi circles will make one full circle

Therefore,

Circumference of circle(2πr)

 \implies 2 \times \dfrac{22}{\cancel{7}} \times \cancel{3.5} \\ \implies \dfrac{\cancel{2} \times 22 }{\cancel{2}} \\ \leadsto{\boxed{22m}}

\large{\therefore Perimeter\:of\:the\:Garden} \\ \implies 13+13 + 22 \\ \huge\leadsto{\boxed{\boxed{\underline{48m}}}}

_______________________________

\huge{\green{\boxed{Area}}}

Area of Figure = Area of Circle + Area of Rectangle

Area of circle(πr²)

 \implies \dfrac{22}{7} \times (3.5)^2 \\ \implies \dfrac{22}{\cancel{7}} \times \cancel{3.5} \times 3.5 \\ \implies \dfrac{\cancel{22}}{\cancel{2}} \times 3.5 \\ \implies 11 \times 3.5\\ \leadsto\boxed{38.5}

Area of Rectangle(L x B)

 13 \times 7 \\ \leadsto\boxed{91}

Therefore

Area of Garden

 91 + 38.5 \\ \huge\leadsto{\boxed{\boxed{\underline{129.5}}}}

_______________________________

Attachments:

EliteSoul: Well Done: :)
Similar questions