Math, asked by tannuverma55, 7 months ago

. The shape of a garden is rectangular in the middle and semi circular
at the ends as shown in the diagram. Find the area and the perimeter
T
of this garden [Length of rectangle is
7 m 20-(3.5 +3.5) metres).
1
20 m
of parallelogram whose base is 24​

Answers

Answered by mehreennaikoo123
5

\underline\bold\green{step \: by \: step \: explination}</p><p></p><p></p><p>

Total area of the garden = Area of the rectangular portion + The sum of the areas of the pair of semi-circles

l.b + 2 \times  \frac{1}{2}\pi {r}^{2}

 = (13 \times 7) {m}^{2}  +

(2 \times  \frac{1}{2}  \times  \frac{22}{7}  \times 3.5 \times 3.5) {m}^{2}

 = (91 + 38.5) {m}^{2}  = 129.5 {m}^{2}

Perimeter of the garden =2× length of rectangular portion + circumference of the circle

 = (2 \times 13 + 2 \times  \frac{22}{7}  \times 3.5)m

 = (26 + 22)m = 48m

Similar questions