Math, asked by itsmysticaldimple, 3 months ago

the side of a rhombus is 5cm if the length of one diagonal of the rhombus is 8cm, then find the length of the other diagonal​

Answers

Answered by Talentedgirl1
4

Answer:

The diagonals of a rhombus intersect at the right angle.

half of each diagonal and the length of the side will form as a right-angle triangle.

Diagonal =8 cm.

2

1

of the diagonal =

2

8

=4 cm

∴a

2

+b

2

=c

2

⇒a

2

+4

2

=5

2

⇒a

2

−25=16

⇒a

2

=9

⇒a=

9

⇒a=3.

Length of the diagonal

2

1

of the diagonal =3 cm

the diagonal =3×2=6 cm

∴ The length of the other diagonal is 6 cm.

Answered by itzpriya22
3

Given :

  • The side of rhombus = 5 cm
  • One of the length of diagonal of rhombus = 8 cm

find:-

  • The length of the other diagonal

solution:-

The relation between the diagonals and sides of a rhombus is given by ,

 \\  \star \: {\boxed{\sf{\purple{ \bigg( \dfrac{d_1}{2}  \bigg)^{2}  +  \bigg( \dfrac{d_2}{2} \bigg)^{2}  =   {s}^{2} }}}}

 \\ \\  \sf{where}\begin{cases} & \sf{d_1  \& \: d_2 \: are \: diagonal \: of \: rhombus} \\   \\ & \sf{s \: is \: side \: of \: the \: rhombus}\end{cases}\\ \\

Substituting the values we have ,

 \\  :  \implies \sf \bigg( \dfrac{8}{2} \bigg)^{2}   +  { \bigg( \dfrac{d_2}{2} \bigg) }^{2}  =  {(5)}^{2}  \\  \\

 \\   : \implies \sf \:  {(4)}^{2}  +  { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 25 \\  \\

 \\   : \implies \sf 16 +  { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 25 \\  \\

 \\   : \implies \sf \: { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 25 - 16 \\  \\

 \\   : \implies \sf \: { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 9 \\  \\

 \\   : \implies \sf \: \bigg( \dfrac{d_2}{2}  \bigg) =  \sqrt{9}  \\  \\

 \\  :  \implies \sf \:\dfrac{d_2}{2} = 3 \\  \\

 \\   : \implies \sf \:d_2 = 3 \times 2 \\  \\

 \\    :  \implies \sf{\underline{\boxed {\mathfrak{\pink{d_2 = 6 \: cm}}}}}  \: \bigstar \\  \\

Hence ,

The length of the other diagonal of the given rhombus is 6 cm

Similar questions