Math, asked by Sakshiyaduvanshi, 1 year ago

the side of a right angle triangle is 17cm less than the other side. if length of hypotenuse is 25cm, find the length of sides

Answers

Answered by nobel
27
Mensuration,

let the base of the right angle triangle as x cm
then the other will be (x - 17)cm

We know that for right angled triangle base² + perpendicular ² = hypotenuse²

So, x² + (x -17)² = 25²

or, x² + x² - 34x + 289 = 625

or, 2x² - 34x + 289 = 625

or, 2x² - 34x - 336 = 0

or, 2x² + 14x - 48x - 336 = 0

or, 2x(x + 7) - 48(x + 7)= 0

or, (x + 7)(2x - 48) = 0

So
Either x will (x + 7) = 0
then x will be - 7

or (x - 24) = 0
then x will be 24

But the value of x cant be -7 because -7 - 17 becomes - 24

But the side of a triangel can't be negative
So the side is 24 cm
and the other side is 7 cm

That's it
Hope it helped (๑´•.̫ • `๑)

Answered by saisanthosh76
3

let \: the \: base \: be \: 4x

altitude \: be \: x - 17

 In \: \triangle ABC, \angle B =90°

 By \:Pythagoras \: Theorem

 {AC}^{2}={AB}^{2}+{BC}^{2}

 {25}^{2} = {(x - 17)}^{2} + {(x)}^{2}

625 = {x}^{2} + {(17)}^{2} - 2(x)(17) +{x}^{2}

625 = {x}^{2} + 289 - 34x + {x}^{2}

625 = 2 {x}^{2} + 289 - 34x

2 {x}^{2} - 34x + 289 - 625 = 0

2 {x}^{2} - 34x - 336 = 0

this \: is \: in \: the \: form \: of \\ a {x}^{2} + bx + c = 0

a = 2 \\ b = - 34 \\ c = - 336

x = \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a}

x = \frac{ -( - 34)± \sqrt{ {( - 34)}^{2} - 4(2) (- 366)} }{2(2)}

x = \frac{34± \sqrt{1156 + 2688} }{4}

x = \frac{34± \sqrt{3844} }{4}

x = \frac{34±62}{4}

x = \frac{34 + 62}{4} \: \: or \: \: x = \frac{34 - 62}{4}

x = \frac{96}{4} \: \: or \: \: x = \frac{ - 32}{4}

{\boxed {\boxed {x = 24 \: \: or \: \: x = - 8}}}

...................

Similar questions