Math, asked by artirajeshmishra15, 11 months ago

the side of rectangle filed are ratio 9: 7 perimeter is 144 meter. find the side​

Answers

Answered by warylucknow
0

Answer:

The sides are 40.5 m and 31.5 m.

Step-by-step explanation:

The formula to compute the perimeter of a rectangle is, P=2(l+b)

Given that the ratio of length and breadth is 9 : 7 and perimeter is 144 m.

Then:

144 = 2 (9x + 7x)

72 = 16x

x = 4.5.

The sides are:

9x = 9 × 4.5 = 40.5 m

7x = 7 × 4.5 = 31.5 m

Thus, the sides are 40.5 m and 31.5 m.

Answered by silentlover45
1

\underline\mathfrak{Given:-}

  • The adjacent side of a rectangle are in the ratio of 9 : 7.
  • Perimeter of rectangle is 144.

\underline\mathfrak{To \: \: Find:-}

  • Find the measures of each side ....?

\underline\mathfrak{Solutions:-}

  • Let the length be 9x.
  • Let the breadth be 7x
  • Perimeter of the rectangle is 144.

\: \: \: \: \: \: \: \therefore \: Perimeter \: \: of \: \: rectangle \: \: \leadsto \: \: {2} \: {(length \: + \: breadth)}

\: \: \: \: \: \: \: \leadsto  \: \: {144} \: \: = \: \: {2} \: {({9x} \: + \: {7x})}

\: \: \: \: \: \: \: \leadsto  \: \: {144} \: \: = \: \: {2} \: {({16x})}

\: \: \: \: \: \: \: \leadsto  \: \: {144} \: \: = \: \: {32x}

\: \: \: \: \: \: \: \leadsto  \: \: {x} \: \: = \: \: \cancel{\frac{144}{32}}

\: \: \: \: \: \: \: \leadsto  \: \: {x} \: \: = \: \: {4.5} \: m.

Now,

  • Length = 9x

⟹ 9 × 4.5

⟹ 40.5 m

  • Breadth = 7x

⟹ 7 × 4.5

⟹ 31.5 m

Hence, sides are 40.5 m, 31.5 m, 40.5 m and 31.5 m.

\underline\mathfrak{Important \: \: formula:-}

  • Area of rectangle = l × b
  • Perimeter of rectangle = 2(l + b)
  • Diagonal of rectangle = √l² + b²
  • Rectangle of the each side of angle is 90°

Where,

  • A = Area of the rectangle
  • L = Length of the rectangle
  • B = Breadth of the rectangle
Similar questions