Math, asked by minakshichaturvedi80, 10 months ago

the side of triangle 18cm24cmand30cmfind the areafind the area of the triangle and hens find the hight corresponding to the side measuring 24 cm​

Answers

Answered by TheEntity
21

Step-by-step explanation:

S of ∆ = a+b+c/2

= 18+24+30/2

= 72/2

= 36 cm

Area of ∆ = √S(S-a)(S-b)(S-c)

= √36(36-18)(36-24)(36-30)

= √36 × 18 × 12 × 6

= √46656

= 216 cm2

Area of ∆ = 1/2 × b × h

=> 216 cm2 = 1/2 × 24 × h

=> 216 cm2 = 12h

Therefore, h = 216/12

= 18 cm

Hope it helps :)

Answered by Anonymous
89

AnswEr :

Refrence of Image is in the Diagram :

\setlength{\unitlength}{1cm}\begin{picture}(6,8)\linethickness{0.075mm}\put(1, .5){\line(2, 1){3}}\put(4, 2){\line(-2, 1){2}}\put(2, 3){\line(-2, -5){1}}\put(.7, .3){$A$}\put(4.05, 1.9){$B$}\put(1.7, 2.95){$C$}\put(3.2, 2.5){$18 cm$}\put(0.6,1.7){$24 cm$}\put(2.7, 1.05){$30 cm$}\end{picture}

\rule{100}{2}

First we will find the Semi Perimeter :

\longrightarrow \sf Semi \:Perimeter = \dfrac{Sum \:of \:Sides}{2} \\\\\\\longrightarrow \sf s = \dfrac{a + b + c}{2} \\\\\\\longrightarrow \sf s = \dfrac{18 + 24 + 30}{2}\\\\\\\longrightarrow \sf s = \cancel\dfrac{72}{2} \\\\\\\longrightarrow \blue{\sf s = 36}

\rule{220}{1}

Calculation of Area of Triangle :

\longrightarrow \sf Area_{\tiny \triangle ABC}= \sqrt{s(s - a)(s - b)(s - c)} \\\\\\\longrightarrow \sf Area_{\tiny \triangle ABC}= \sqrt{36(36 - 18)(36 - 24)(36-30)} \\\\\\\longrightarrow \sf Area_{\tiny \triangle ABC}= \sqrt{36 \times18 \times12\times6}\\\\\\\longrightarrow \sf Area_{\tiny \triangle ABC}= \sqrt{(6 \times6) \times(6\times3) \times(3 \times 2 \times2) \times6} \\\\\\\longrightarrow \sf Area_{\tiny \triangle ABC}= \sqrt{(6 \times 6)(6 \times 6)(3 \times 3)(2 \times2)} \\\\\\\longrightarrow \sf Area_{\tiny \triangle ABC}= 6\times6\times 3 \times 2 \\\\\\\longrightarrow \boxed{\sf Area_{\tiny \triangle ABC}= 216\:{cm}^{2}}

Hence, Area of Triangle will be 216 c.

\rule{220}{2}

  • Base = 24 cm
  • Area of Triangle = 216 cm²
  • Height = ?

\implies\tt Area = \dfrac{1}{2} \times b \times h\\\\\\\implies\tt 216 = \dfrac{1}{2} \times24 \times h\\\\\\ \implies \tt \cancel\dfrac{216 \times 2}{24} = h\\\\\\\implies\red{\boxed{\tt h = 18 \:cm}}

Height to the base 24 cm will be 18 cm.


Anonymous: ♡ thanks
TheEntity: your most welcome :)
Similar questions