English, asked by neetujain2726, 9 months ago

The sides AB & AC of a traingle ACB are produced to P & O respectively if the bisector of angle PBC & angle QCB intersect at O then angle BOC??????????​

Answers

Answered by guptasant72
0

Answer:

EXPLANATION.

A motorcycle is moving vwith a speed of

=> 60 km/hr = 60 X 5/18 = 50/3 m/s.

=> The mass of the motorcycle = 120 kg.

To calculate the kinetic energy.

\rm \to \boxed{\green{\: formula \: of \: kinetic \: energy \: = \frac{1}{2} m {v}^{2}} }→

formulaofkineticenergy=

2

1

mv

2

\rm \to \: \frac{1}{2} \times 120 \times \frac{50}{3} \times \frac{50}{3}→

2

1

×120×

3

50

×

3

50

=> 16666.6 joule.

Deprivation of kinetic energy.

\rm \to \: \Delta \: k \: = w→Δk=w

\rm \to \: \Delta \: k \: = \int \: f(r).dr→Δk=∫f(r).dr

\rm \to \: \Delta \: k \: = \int \: ma.dr→Δk=∫ma.dr

\rm \to \Delta \: k \: = m \int \frac{dv}{dt} . \: dr→Δk=m∫

dt

dv

.dr

\rm \to \: \Delta \: k \: = m \int \: \frac{dr}{dt} . \: dv→Δk=m∫

dt

dr

.dv

\rm \to \: \Delta \: k \: = m \int \: v \: . \: dv→Δk=m∫v.dv

\rm \to \: \Delta \: k \: = \frac{1}{2} mv {}^{2} - \frac{1}{2}m v_{0} {}^{2}→Δk=

2

1

mv

2

2

1

mv

0

2

\boxed{\green{\rm \to \: ke \: = \: \frac{1}{2}m {v}^{2} }}

→ke=

2

1

mv

2

Similar questions