Math, asked by sujeetsingh589, 2 months ago

The sides of a rectangular park are in the ratio 4:3. If its area is 2028 sq. m, find the cost of fencing
it at 3
per meter​

Answers

Answered by Aditya33858
5

Answer:

let the ratios of sides be 4x and 4x

Area = l x b

2028 = (4x) x (3x)

2028 = 12x²

2028/12 = x²

169 = x²

13 = x

Length = 4x13

= 52m

Breadth = 3x13

= 39m

Perimeter = 2 ( 52+39)

= 2 x 91

= 182m

Cost of fencing = 182 x 3

= 546

Answered by sapana050607
2

Answer:

let the ratio of sides before 4x and 3x

area = l \times b

2028 = 4x \times 3x

2028 = 12 {x}^{2}

{x}^{2}  =  \frac{2028}{12}

{x}^{2}  = 169

x = 13

length = 4 \times 13 = 52m

breadth = 3 \times 13 = 39m

perimeter  = 2(l + b)

2 \times (25 + 39)

2 \times 91 = 182m

cost \: of \: fencing = 182 \times 3 \\ \:  \:  \:  546

hope it will help you mark as brainlist answer

Similar questions