Math, asked by jigyasha219, 2 months ago

the sides of a rhombus are 5cm each and one diagonal is 8cm. Calculate the length of the other diagonal and the area of the rhombus
it's answer is 6cm,24cm^2​

Answers

Answered by itscandycrush
12

Given:-

  • Side of Rhombus = 5cm

  • Length of diagonal₁ = 8cm

╌╌┄┄┈┈┈────

To Find:-

  • Length of other diagonal

  • Area of rhombus

╌╌┄┄┈┈┈────

Formula/Concept Used:-

  • Diagonal bisects each other perpendicularly

  • Pythagorean theorem ( h² = b² + p² )

  • Area of rhombus = ½ × diagonal₁ × diagonal₂

╌╌┄┄┈┈┈────

Solution:-

Let half the length of second diagonal be x

As two diagonals and a side form right angled triangle ;

By pythagorean theoream:

⇒ 5² = 4² + x²

⇒ 25 = 16 + x²

⇒ x² = 25 - 16

⇒ x² = 9

⇒ x = √9

⇒ x = √3×3

∴ x = 3cm

Length of other diagonal = 2x = 2×3 = 6cm

Area of rhombus

= ½ × diagonal₁ × diagonal₂

= ½ × 8 × 6

= 48 ÷ 2

= 24cm²

╌╌┄┄┈┈┈────

Answer:-

  • Length of other diagonal = 6cm
  • Area of rhombus = 24cm²

════◄••❀••►════

Attachments:
Answered by Anonymous
11

AnswEr-:

  • \underline {\mathrm {\star{\pink{The\:Area \:of\:Rhombus \;is\:24\:cm^{2}\:.}}}}\\

  • \underline {\mathrm {\pink{\star{ The\:Diagonal _{2} \:or \:Diagonal \:of\:Rhombus \:is\:6\:cm.}`}}}\\

Explanation-:

\mathrm {\bf{ Given -:}}\\

  • The each sides of a rhombus are of 5cm .

  • The one of its Diagonal is 8 cm .

\mathrm {\bf{ To\:Find -:}}\\

  • The Length of the other Diagonal.

  • The Area of a Rhombus.

\mathrm {\bf{\dag{Solution \:of\:Question \:-:}}}\\

_________________________________

\mathrm {\bf{\dag{ Finding \:  \:\:Other\:Diagonal \:of\:Rhombus \:-:}}}\:

As , We know that ,

  • Diagonals of Rhombus bisectes each other and they are Perpendicular.

And,

  • As , Half of Two Diagonals form Right Angled Triangle in Rhombus.

\mathrm {\bf{ Let's \:Assume -:}}\\

  • Side of Rhombus as Base Hypotenuse of Right angled triangle = 5cm

  • Half of Diagonal 1 = Base of Right angled triangle = \dfrac{8}{2} = 4\:cm

  • Half of Diagonal 2 = Perpendicular of Right angled triangle = x cm

As , We know that ,

Pythagoras Theorem-:

  • \underline{\boxed{\star{\sf{\blue{ Hypotenuse^{2}\: =  \:Base^{2}  \: +  \: Perpendicular ^{2} }}}}}

Now , By Putting known Values in Pythagoras Theorem-:

  • \qquad \quad \qquad \quad \longmapsto {\mathrm { 5^{2} = 4^{2} + Perpendicular^{2}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm { 25 = 16 + Perpendicular^{2}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm { 25 -16 = Perpendicular^{2}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm { 9  =  Perpendicular^{2}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm { \sqrt {9}=  Perpendicular  }}\\

  • \qquad \quad \qquad \quad \underline {\boxed{\pink{\mathrm { 3 cm  =  Perpendicular  }}}}\\

Then Putting x = 3 ,

  • Half of Diagonal 2 = Perpendicular of Right angled triangle = x = 3 cm

___________________________

As , We know that ,

  • Half of Diagonal 2 or Other Diagonal = 3 cm

Then ,

  • Diagonal 2 or Other Diagonal of Rhombus = 3 × 2 = 6 cm

Hence ,

  • \underline {\mathrm {\pink{\star{ The\:Diagonal _{2} \:or \:Diagonal \:of\:Rhombus \:is\:6\:cm.}`}}}\\

_____________________________________________

\mathrm {\bf{\dag{ Finding \:  \:\:Area  \:of\:Rhombus \:-:}}}\:

As , We know that,

  • \underline{\boxed{\star{\sf{\red{ Area_{(Rhombus)}  \: = \dfrac{1}{2} \times Diagonal _{1} \times Diagonal _{2} \: sq.units }}}}}

  •  \mathrm{\bf{\blue {Here \:\: -:}}} \begin{cases} \sf{\blue{The\:Diagonal _{1} \:or\:one\:Diagonal \:of \:the\:Rhombus \: \:is\:= \frak{8\:cm}}} & \\\\\sf{\pink{The\:Diagonal _{2} \:or\:other\:Diagonal \:of \:the\:Rhombus \: \:is\:= \frak{\:6\:cm}}} \end{cases} \\\\

Now By Putting known Values in Formula for Area of Rhombus-:

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  \dfrac{1}{2} \times 8 \times 6   }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  \dfrac{1}{\cancel {2}} \times \cancel {8} \times 6  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  4 \times 6   }}\\

  • \qquad \quad \qquad \quad \underline {\boxed{\pink{\mathrm {  Area = 24\:cm^{2} }}}}\\

Hence ,

  • \underline {\mathrm {\star{\pink{The\:Area \:of\:Rhombus \;is\:24\:cm^{2}\:.}}}}\\

_______________________________________________________________

\large { \boxed {\mathrm |\:\:{\underline {More \:To\:Know\:-:}}\:\:|}}

  • Area of Rectangle = Length × Breadth sq.units

  • Area of Square = Side × Side sq.units

  • Area of Triangle = ½ × Base × Height sq.units

  • Area of Trapezium = ½ × Height × ( a +b ) or Sum of Parallel sides sq.units

________________________________________________________________

Attachments:
Similar questions