Math, asked by solu3408, 11 months ago

The sides of a triangle are 25cm,39cm and 56cm. Find (I) area, (ii) the length of the perpendicular drawn from the opposite vertex to the side of 25 cm.

Answers

Answered by BrainlyKing5
47

Answer :

\boxed{\boxed{\mathsf{Area = 420cm^2 \: and \: Height = 33.6cm}}}

Step-by-step Explanation :

Given

  • The sides of a triangle are 25cm,39cm and 56cm.

To Find

  • (i) Area of triangle .
  • (ii) The length of the perpendicular drawn from the opposite vertex to the side of 25 cm.

Solution

(i) Area Of The Triangle

Now according to question let the

\mathsf{\longrightarrow \: First \: Side \: (a) = 25cm}

\mathsf{\longrightarrow \: Second \: Side \: (b) = 39cm}

\mathsf{\longrightarrow \: Third \: Side \: (c) = 56cm}

Now by Heron's Formula we have,

\boxed{\mathsf{\bigstar \: Area\: of \: Triangle = \sqrt{s(s - a)(s - b)(s - c)}}}

Where

\mathsf{\longrightarrow \: (a) = First \: Side \: = 25cm}

\mathsf{\longrightarrow \: (b) = Second \: Side \: = 39cm}

\mathsf{\longrightarrow \: (c) = Third \: Side \: = 56cm}

\longrightarrow \: \implies \mathsf{S = Semi - Perimeter}

\longrightarrow \: \longrightarrow \mathsf{S = \dfrac{a + b + c}{2}}

\longrightarrow \: \longrightarrow \mathsf{S = \dfrac{25cm + 39cm + 56cm}{2}}

\longrightarrow \: \longrightarrow \mathsf{S = \dfrac{120cm}{2} = 60cm}

Now putting above values in formula we have,

\longrightarrow \:\mathsf{Area = \sqrt{s(s - a)(s - b)(s - c)}}

\longrightarrow \:\mathsf{Area = \sqrt{60(60 - 25)(60 - 39)(60 - 56)}}

\longrightarrow \:\mathsf{Area = \sqrt{60(35)(21)(4)}}

\longrightarrow \:\mathsf{Area = \sqrt{2 \times 2 \times 3 \times 5(5 \times 7)(3 \times 7)(2 \times 2)}}

\longrightarrow \:\mathsf{Area = \sqrt{ {2}^{2} \times  {2}^{2} \times  {3}^{2}  \times {5}^{2} \times  {7}^{2} }}

\longrightarrow \:\mathsf{Area = 2 \times 2 \times 3 \times 5 \times 7 }

\longrightarrow \:\mathsf{Area = 420cm^2}

(ii) Height with base (a)

Now we also know that ,

\boxed{\mathsf{\bigstar \: Area \: of \: Triangle = \dfrac{1}{2} \times Base \times Height}}

Where,

\mathsf{\longrightarrow \: Base = a = 25cm}

\mathsf{\longrightarrow \: Height = h = To \: Find}

\mathsf{\longrightarrow \: Area =  420cm}

Now putting this value in above formula we have,

\mathsf{ Area \: of \: Triangle = \dfrac{1}{2} \times Base \times Height}

\mathsf{ 420cm^2 = \dfrac{1}{2} \times 25cm \times Height}

\mathsf{ 420cm^2 \times 2 = 25cm \times Height}

\mathsf{ Height = \dfrac{840cm^2}{25cm}}

\mathsf{ Height = 33.6cm}

\rule{300}{1}

Answered by krishnakumarkti123
4

Answer:

ANSWER IS 33.6 CM

Step-by-step explanation:

Hence, Height is 420×2/25

Hence it is help you

Attachments:
Similar questions