Math, asked by Parikshit5362, 1 year ago

The sides of an equilateral triangle are (a + 2b), (a + 2b + 1 ) and (2a - b), then the area of the triangle will be?

Answers

Answered by anshah1110
23

Sir,

the above question states that the triangle is Equilateral.

Thus, all of its sides must be Equal.

But the 1st and the 2nd lengths provided are cannot be equal ...

as the terms (a + 2b) are common with a (+1) in the second which clearly shows the inequality in the lengths.......

Pleas check the question again if it might be a typing mistake.

Regards,

Ansh Shah (IX)

Answered by nuhitag0
28

Answer:

25 \sqrt{3} / 64\\ sq. units

Step-by-step explanation:

Given that the tritriangle is equilateral :

a+2b = a-2b+1 = 2a-b

a+2b = 2a-b                                      a-2b+1 = 2a - b

3b = 2a - a                                         a= 2a - b + 2b - 1

3b = a                                                a- 2a = b - 1

                                                         -1a= b - 1

                                                          a = 1 - b

3b = 1 - b                                           a = 1 - 1/4 = 3/4

3b + b = 1                                           therefore ; a = 3/4

4b = 1

therefore ; b = 1/4  

a = 3/4

Side = a + 2b     ( all sides are equal in equilateral triangle )

3/4 + 2 * 3/4 + 2 * 1/4 \\= 3+2/4 \\= 5/4\\                                

Area = \sqrt{3}  / 4  ( side)²

\sqrt{3} / 4 * (5/4)^{2} \\=\sqrt{3} / 4 * 25/16\\=25 \sqrt{3} / 64

threrefore ; answer is

25 \sqrt{3} / 64\\ sq. units

Similar questions