Math, asked by aknishad43, 1 year ago

the sides of an equilateral triangle is 50 cm. find its area using heron's formula ​

Answers

Answered by vatsal00
18
\huge{\underline{Answer~:}}

Area of triangel :-

semiperimeter :)

 = \frac{a + b + c}{2} \\ \\ = \frac{50 + 50 + 50}{2} \\ \\ = 75 \: cm

Heron's formula :)

 = \sqrt{s(s - a)(s - b)(s - c) } \\ \\ = \sqrt{75 \times 25 \times 25 \times 25} \\ \\ = 25 \sqrt{25 \times 3 \times 25} \\ \\ = 25 \times 25 \sqrt{3} \\ \\ = 625 \sqrt{3} { \: cm}^{2}

\huge{\underline{Answer~is~625\sqrt{3}}}

mark as brainliest answer and plz follow me.

vatsal00: hi
aknishad43: hello
vatsal00: plz follow me
priya6386: thanks
Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=1082.53\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Sides \: of \: triangle =50 cm,50 cm,50 cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\ : \implies s = \frac{a + b + c}{2} \\ \\ : \implies s = \frac{50+50+ 50}{2} \\ \\ : \implies s = \frac{150}{2} \\ \\ \green{ : \implies s =75 } \\ \\ \circ\: \bold{Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} } \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{75(75-50)(75-50)(75- 50)} \\ \\ : \implies \text{Area \: of \: triangle =}\sqrt{75\times 25\times 25\times 25} \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{1171875} \\ \\ : \implies \text{Area \: of \: triangle =}1082.53\: cm^{2} \\ \\ \ \green{\therefore \text{Area \: of \: triangle = 1082.53\: {cm}}^{2} }

Similar questions