Math, asked by neha3150, 8 months ago

the sides of the triangle are in the ratio 1/3: 1/4: 1/5 are its perimeter is 94cm.the length of the smallest side is ?

Answers

Answered by BloomingBud
22

Given:

The sides of a triangle are in the ratio (1/3):(1/4):(1/5)

The perimeter of the triangle is 94 cm

To find:

The length of the smallest side of the triangle

Now,

Let the side of the triangle be

  • (1/3)x = (x/3) cm
  • (1/4)x = (x/4) cm
  • (1/5)x = (x/5) cm

The perimeter of the triangle = Sum of all sides of the triangle

\implies \frac{x}{3}+ \frac{x}{4}+ \frac{x}{5} = 94

\implies \frac{20x+15x+12x}{60} = 94

\implies 20x+15x+12x = 94 \times\bf{ 60}

[Taking 60 to RHS]

\implies 47x= 5640

\implies x= \frac{5640}{47}

∴ x = 120

So,

The sides of the triangle are

  • (1/3)x = (x/3) cm

= (120)/3 = 40 cm

  • (1/4)x = (x/4) cm

= (120)/4 = 30 cm

  • (1/5)x = (x/5) cm

= (120)/5 = 24 cm

Hence,

  • The smallest side is 24 cm
Answered by DARLO20
27

GIVEN :-

  • Tʜᴇ sɪᴅᴇs ᴏғ ᴀ ᴛʀɪᴀɴɢʟᴇ ᴀʀᴇ ɪɴ ᴛʜᴇ ʀᴀᴛɪᴏ \bf\red{\dfrac{1}{3}\::\:\dfrac{1}{4}\::\:\dfrac{1}{5}\:} .

  • Tʜᴇ ᴘᴇʀɪᴍᴇᴛᴇʀ ᴏғ ᴛʜᴇ ᴛʀɪᴀɴɢʟᴇ ɪs "94 m" .

TO FIND :-

  • Tʜᴇ ʟᴇɴɢᴛʜ ᴏғ ᴛʜᴇ sᴍᴀʟʟᴇsᴛ sɪᴢᴇ ᴏғ ᴛʜᴇ ᴛʀɪᴀɴɢʟᴇ .

SOLUTION :-

ʟᴇᴛ,

  • ᴛʜᴇ sɪᴅᴇs ᴏғ ᴛʜᴇ ᴛʀɪᴀɴɢʟᴇ ʙᴇ,

1. \bf{\dfrac{X}{3}\:cm\:}

2. \bf{\dfrac{X}{4}\:cm\:}

3. \bf{\dfrac{X}{5}\:cm\:}

ᴡᴇ ʜᴀᴠᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

\red\checkmark\:\bf\blue{The\:sum\:of\:sides\:of\:the\:triangle\:=\:Perimeter\:of\:the\:triangle\:}

\bf{:\implies\:\dfrac{X}{3}\:+\:\dfrac{X}{4}\:+\:\dfrac{X}{5}\:=\:94\:}

\rm{:\implies\:\dfrac{20X\:+\:15X\:+\:12X}{60}\:=\:94\:}

\rm{:\implies\:47X\:=\:94\times{60}\:}

\rm{:\implies\:X\:=\:\dfrac{5640}{47}\:}

\bf\green{:\implies\:X\:=\:120\:cm\:}

☯︎ Hᴇɴᴄᴇ, ᴛʜᴇ sɪᴅᴇs ᴏғ ᴛʜᴇ ᴛʀɪᴀɴɢʟᴇ ᴀʀᴇ,

  • \bf{\dfrac{X}{3}\:=\:\dfrac{120}{3}\:=\:\pink{40\:cm}}

  • \bf{\dfrac{X}{4}\:=\:\dfrac{120}{4}\:=\:\pink{30\:cm}}

  • \bf{\dfrac{X}{5}\:=\:\dfrac{120}{5}\:=\:\pink{24\:cm}}

\huge\red\therefore Tʜᴇ ʟᴇɴɢᴛʜ ᴏғ ᴛʜᴇ sᴍᴀʟʟᴇsᴛ sɪᴢᴇ ᴏғ ᴛʜᴇ ᴛʀɪᴀɴɢʟᴇ ɪs "24 m" .

Similar questions