Math, asked by Anonymous, 8 months ago

The simple interest on a sum of money for 2 years at 10% per annum is RS 6000 what will be the compound interest on the same sum at the same rate for the same period .

Don't Spam .​

Answers

Answered by prince5132
37

GIVEN :-

  • simple interest , S.I = Rs. 6000.
  • Rate , R = 10 % P.a
  • Time , T = 2 years.

TO FIND :-

  • The compound interest on the same sum at the same rate for the same period.

SOLUTION :-

 \\  \red \bigstar \boxed{ \tt \:S.I = \dfrac{PRT}{100} } \\  \\  \implies \displaystyle \tt \:6000 =  \dfrac{P \times 10 \times 2}{100}   \\  \\ \implies \displaystyle \tt \:6000 =  \dfrac{20P}{100}  \\  \\ \implies \displaystyle \tt \:P =  \dfrac{6000 \times 100}{20}  \\  \\ \implies \displaystyle \tt \:P  =   \cancel\dfrac{600000}{20}  \\  \\   \red \bigstar \:  \: \boxed{ \red{ \tt \: P = 30000}} \:  \:  \red  \bigstar \\

Now

 \\  \red \bigstar \:  \boxed{ \tt \: C.I = P\bigg[ \bigg( 1 + \dfrac{R}{100}\bigg)^{n} - 1 \bigg]} \\  \\  \implies \displaystyle \tt \: C.I = 30000\bigg[ \bigg( 1 + \dfrac{10}{100}\bigg)^{2} - 1 \bigg] \\  \\ \implies \displaystyle \tt \: C.I = 30000\bigg[ \bigg(  \dfrac{11}{10}\bigg)^{2} - 1 \bigg] \\  \\ \implies \displaystyle \tt \: C.I = 30000\bigg[ \bigg(  \dfrac{121}{100}\bigg) - 1 \bigg] \\  \\ \implies \displaystyle \tt \: C.I = 30000\bigg[  \dfrac{121}{100} - 1 \bigg] \\  \\ \implies \displaystyle \tt \: C.I = 30000\bigg[  \dfrac{121 - 100}{100}  \bigg] \\  \\ \implies \displaystyle \tt \: C.I = 30000\bigg[  \dfrac{21}{100}  \bigg] \\  \\ \implies \displaystyle \tt \: C.I = 30000 \times  \dfrac{21}{100}   \\  \\ \implies \displaystyle \tt \: C.I = 300 \times21 \\  \\   \red \bigstar \:  \:  \boxed{ \red{ \tt \: C.I = 6300}} \:  \:  \red \bigstar \\  \\  \underline{ \underline{ \therefore \:  \tt \: The  \: compound \:  interest \: is \:  Rs.  \: 6300}}


Anonymous: Always Awesome ♥️♥️♥️♥️:hug:
Answered by Anonymous
25

⤳  \underbrace{ \boxed{ \tt   \underline{\underline{ \green{ GIVEN }}}}}

 \tt⚫S.I. = rs.6000

 \tt⚫R = 10\%

 \tt⚫T = 2 \: years

⤳  \underbrace{ \boxed{ \tt   \underline{\underline{ \pink{ FIND }}}}}

 \tt⚫C.I.  \: on  \: the  \: same \:  sum     \: at  \: the  \: same   \\  \tt rate  \: for  \: the  \: same  \: period .

⤳  \underbrace{ \boxed{ \tt   \underline{\underline{ \red{ SOLUTION}}}}}

 \tt ➔  S.I. =  \frac{P\times R \times T}{100}

 \tt ➔  6000 =  \frac{P\times 10 \times 2}{100}

 \tt ➔  P =  \frac{6000 \times  \cancel{10} \cancel0}{1 \cancel0 \times  \cancel2}  =  60000 \times 5

 \tt ➔  P =  rs.30000

 \tt☄ Now, C.I.

 \tt ➨ C.I. = P ({[1+\frac{R}{100}]}^{T}-1)

 \tt ➨ C.I. = 30000 ({[1+\frac{10}{100}]}^{2}-1)

 \tt☄ take \: L.C.M

 \tt ➨ C.I. = 30000 ({[\frac{100 + 10}{100}]}^{2}-1)

 \tt ➨ C.I. = 30000 ({[\frac{110}{100}]}^{2}-1)

 \tt ➨ C.I. = 30000 ([1.21]-1)

 \tt ➨ C.I. = 30000 (0.21)

 \tt ➨ C.I. = rs.6300

 \tt \blue{Hence, C.I. on \: the \: same \: sum \: at \: the \: same}   \\  \tt\blue {rate \: for \: the \: same \: period \: of \: time} \\  \boxed{ \tt\pink {rs.6300}}


Anonymous: Thank you!
Similar questions