Math, asked by mdshwfique, 11 months ago

The simple interest on a sum of money for2 years at 6 percent per annum is ₹ 900. what will be the compound interest at thatvsum at the same rateqnd for the same period?​

Answers

Answered by TRISHNADEVI
1

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \mathfrak{Suppose,} \\   \\ \mathtt{</p><p>The  \:  \: sum  \:  \: of \:  \:  money \:  \:  be \:  \:  Rs.  \:  P} \\  \\  \underline{ \mathfrak{ \: Given, \: }} \\  \\  \mathtt{Rate \:  \:  of \:  \:  Interest, r = 6\%} \\  \\  \mathtt{No.  \:  \:  of \:  \:  years, n = 2  \:  \: years.} \\  \\  \mathtt{S.I. = Rs. 900 }

 \underline{ \mathfrak{ \:  \: We \:  \:  know  \:  \:  that, \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{S.I. =  \frac{P \times r \times n}{100} } \\  \\  \mathtt{\Longrightarrow \: 900 =  \frac{ P\times 6 \times 2}{100} } \\  \\ \mathtt{\Longrightarrow \:900 =  \frac{12P}{100}  } \\  \\ \mathtt{\Longrightarrow \:12P = 90000 } \\  \\ \mathtt{\Longrightarrow \:  P=  \frac{90000}{12} } \\  \\ \mathtt{\therefore \:  \:  \: P = 7500} \:

 \bold{Hence,} \\  \:  \:  \:  \:  \:  \:  \:  \bold{The \:   \: sum \:   \: of  \:  \: money = Rs. \:  7500}</p><p>

 \mathfrak{Now,} \\  \\  \underline{ \mathfrak{ \:  \: We  \:  \: know  \:  \: that, \:  \: }} \\  \\  \mathtt{C.I. = A - P } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{ = P(1 +  \frac{r}{100}) {}^{n}  - P } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \mathtt{ =P(1 +  \frac{r}{100} ) {}^{n}  - 1 } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \mathtt{ = 7500 \times (1 +  \frac{6}{100}) {}^{2}  - 1 } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \mathtt{ = 7500 \times ( \frac{106}{100} ) {}^{2}  - 1} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \mathtt{ = 7500 \times ( \frac{11236}{10000}  - 1)} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \mathtt{ = 7500 \times ( \frac{11236 - 10000}{10000} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \mathtt{ = 7500 \times  \frac{1236}{10000} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \mathtt{ = \frac{9,270,000}{10000}  } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \mathtt{ = 927}

 \bold{Hence,} \\  \:  \:  \:  \bold{Compound \:  \: interest \:  \: of \:  \: the \:   \: sum \:  \:  = Rs. \:  927}</p><p>

Answered by Aɾꜱɦ
0

Correct Question :-

The simple interest on a sum of money for 2 years at 6 percent per annum is ₹ 900. what will be the compound interest at The sum at the same Rate and for the same period?

 \rule{300}{2}

Answer

\small \underline{\underline{\texttt{\purple{compound\: interest = 927}}}}

\bf{Given}\begin{cases}\bf{ Rate \:of \:interest \:= 6percentage } \\ \sf{Year=2} \\\tt{simple \:interest =900}\\\tt{period =?}\end{cases}

 \rule{300}{2}

\small\red{\boxed{\bold{ To\: Find }}}

\small\tt\underline{ We\: have\: to\: find \:period \:(p) }

\large\underline\textsf{Explanation:-}

\bf s.i \:  \rightarrow \:  \frac{ p \times r \times n}{100}  \\  \:  \:  \\  \bf  \rightarrow900 =  \frac{p \times 6 \times 2}{100 } \\  \\  \bf \rightarrow 900 =  \frac{12p}{100}  \\  \\  \bf\rightarrow 12p = 90000 \\ \\ \bf\rightarrow  p =  \frac{90000}{12}  \\ \\ \bf\rightarrow p = 7500

\because \huge\sf\underline{ period = 7500}

 \rule{300}{2}

\large\because\sf\underline{ Compound \:interest :- }

\sf c.i = a - p \\  \sf\rightarrow p(1 +  \frac{r}{100}) {}^{n}   - 1 \\ \\ \sf\rightarrow p(1 +  \frac{r}{100} ) {}^{n}  - 1

 \sf\rightarrow 7500 \times (1 +  \frac{6}{100}) {}^{2}   - 1 \\ \\  \sf\rightarrow 7500 \times (106) ^{2}  - 1 \\

 \tt\rightarrow 7500 \times ( \frac{\cancel11236 - 1\cancel0\cancel0\cancel0\cancel0}{\cancel1\cancel0\cancel0\cancel0\cancel0} ) \\ \\  \tt\rightarrow 7500 \times  \frac{1236}{10000}  \\

\bf\rightarrow \frac{927\cancel0\cancel0\cancel0\cancel0}{\cancel1\cancel0\cancel0\cancel0\cancel0}  \\ \\ \bf\rightarrow 927

\large{\boxed{\bold{ Compound \:interest = 927}}}

Similar questions