The simplest rationalisation factor of 500 is?
plzz tell the correct answer with correct explanation
Answers
Answer:
The rationalizing factor of \sqrt[3]{500}
3
500
is 2^{\frac{1}{3}}2
3
1
Step-by-step explanation:
Given : Number \sqrt[3]{500}
3
500
To find : The simplest rationalizing factor of the given number?
Solution :
First we find the cube root of the number 500,
\sqrt[3]{500}
3
500
=(500)^{\frac{1}{3}}=(500)
3
1
=(5^3\times 2^2)^{\frac{1}{3}}=(5
3
×2
2
)
3
1
=(5^{\frac{3}{3}}\times 2^{\frac{2}{3}})=(5
3
3
×2
3
2
)
=(5\times 2^{\frac{2}{3}})=(5×2
3
2
)
So, The rationalizing factor of \sqrt[3]{500}
3
500
is 2^{\frac{1}{3}}2
3
1
As =(500)^{\frac{1}{3}}\times 2^{\frac{1}{3}}=(500)
3
1
×2
3
1
=(5\times 2^{\frac{2}{3}})\times 2^{\frac{1}{3}}=(5×2
3
2
)×2
3
1
=5\times 2^{\frac{2}{3}+\frac{1}{3}}=5×2
3
2
+
3
1
=5\times 2^{1}=5×2
1
=5\times 2=5×2
=10=10
10 is a rational number.
Therefore, The rationalizing factor of \sqrt[3]{500}
3
500
is 2^{\frac{1}{3}}2
3
1