Math, asked by vandana55, 1 year ago

the slant height of a frustum of a com

Attachments:

Answers

Answered by Anant02
1

 \sqrt{ \frac{ \sec( \alpha )  - 1}{ \sec( \alpha ) + 1} }  +  \sqrt{ \frac{ \sec( \alpha ) + 1 }{ \sec( \alpha )  - 1} }  \\  =   \frac{ \sqrt{ {( \sec( \alpha ) - 1) }^{2} } +  \sqrt{ {( \sec( \alpha ) + 1) }^{2} }  }{ \sqrt{( \sec( \alpha)  - 1)( \sec( \alpha ) + 1) } }  \\  =  \frac{( \sec( \alpha ) - 1) + ( \sec( \alpha ) + 1)}{ \sqrt{ { \sec( \alpha ) }^{2} - 1 } }  \\  =  \frac{2 \sec( \alpha ) }{ \sqrt{ { \tan( \alpha ) }^{2} } }  \\  =  \frac{2 \sec( \alpha ) }{ \tan( \alpha ) }  \\  =  \frac{2 \frac{1}{ \cos( \alpha ) } }{ \frac{ \sin( \alpha ) }{ \cos( \alpha ) } }  \\  =  \frac{2}{ \sin( \alpha ) }  \\  = 2 \csc( \alpha ) proved
Answered by SakshaM725
2
The aalttachment will help you ( hope so)

And sorry for the mistake in middle
Attachments:
Similar questions