Math, asked by chouhanbharat7181, 1 year ago

The slant height of cone is 13cm and its height is 12cm find radius of cone base

Answers

Answered by 12312312344
2

Answer:

5

Step-by-step explanation:

(slant height)^2=(radius)^2+(height)^2

13^2=r^2 + 12^2

169=r^2 + 144

r^2=169-144

r^2=25

r=5

Answered by silentlover45
7

 Given:-

  •  Altitude \: \: of \: \: cone \: = \: 12 \: cm.

  •  slent \: \: height \: = \: 13 \: cm.

 To \: \: Find:-

  •  Volume \: \: of \: \: cone

 Solutions:-

  •  Using \: \: the \: \: Pythagoras \: \: theorem \: \: for \: \: find \: \: radius \: \: of \: \: cone.

⇢ l \: = \: \sqrt{{r}^{2} + {h}^{2}}

⇢ 13 \: = \: \sqrt{{r}^{2} + {12}^{2}}

⇢ 13 \: = \: \sqrt{{r}^{2} + {144}}

⇢ {13}^{2} \: = \: {r}^{2} + {144}

⇢ {169} - {144} \: = \: {r}^{2}

⇢ {25} = \: {r}^{2}

⇢ {r} = \: \sqrt{25}

⇢ {r} = \: {5}

  •  Volume \: \: of \: \: cone \: ⇢ \: \frac{1}{3} \: π{r}^{2}h

⇢  \: \frac{1}{3} \: × \: \frac{22}{7} \: × \: {5}{2} \: × \: {12}

⇢  \: \frac{22}{7} \: × \:{25} \: × \: {4}

⇢  \: {314.28} \: × \: {cm}^{3}

≫≫ hence, \: \: the \: \: volume \: \: of \: \: a \: \: right \: \: circular \: \: is \: 314.28 \: {cm}^{2}.

______________________________________

Similar questions