Math, asked by nayanasibi, 4 months ago

the slope of a line -3. The line passing through thr point (2, 3).Write the coordinates of other two points on this line​

Answers

Answered by mathdude500
3

\large\underline\blue{\bold{Given \:  Question :-  }}

  • The slope of a line is -3. The line passing through the point (2, 3). Write the coordinates of other two points on this line.

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given - \begin{cases} &\sf{slope \: of \: line \: is \:  - 3} \\ &\sf{line \:  passing \:  through \: point \:  (2, 3)} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf To \:  find :-  \begin{cases} &\sf{two \: coordinates \: on \: the \: line}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Formula  \: used:-   \begin{cases} &\sf{\bf \:y - y_1 = m(x-x_1)}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf where= \begin{cases} &\sf{(x_1,y_1) \: is \: the \: point \: from \: where \: lne \: passed } \\ &\sf{m \: is \: the \: slope \: of \: line} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Solution :-  }}

It is given that line passes through the point (2, 3) and having slope, m = - 3.

So, equation of line is given by

\bf \:y - y_1 = m(x-x_1)

\begin{gathered}\begin{gathered}\bf where= \begin{cases} &\sf{ (x_1,y_1) } = (2, 3) \\ &\sf{m =  - 3} \end{cases}\end{gathered}\end{gathered}

\sf \:  ⟼y - 3 =  - 3 \times (x - 2)

\sf \:  ⟼y - 3 =  - 3x + 6

\sf \:  ⟼3x + y = 9\sf \:  ⟼(1)

─━─━─━─━─━─━─━─━─━─━─━─━─

Now, to find the coordinates on line (1)

\large\underline\red{\bold{❥︎Step :- 1 }}

\sf \:  ⟼❶ Substituting \:  'x = 0'  \: in \:  (1), we \:  get

\begin{gathered}:\implies\:\:\sf{3\times{0}\:+\:y\:=\:9} \\ \end{gathered}

\begin{gathered}:\implies\:\:\sf{{0}\:+\:y\:=\:9} \\ \end{gathered}

\begin{gathered}:\implies\:\:\sf{\:y\:=\:9} \\ \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 2 }}

\sf \:  ⟼ ❷ Substituting  \: 'x = 1' \:  in \:  (1),  \: we  \: get

\begin{gathered}:\implies\:\:\sf{3\times{1}\:+\:y\:=\:9} \\ \end{gathered}

\begin{gathered}:\implies\:\:\sf{{3}\:+\:y\:=\:9} \\ \end{gathered}

\begin{gathered}:\implies\:\:\sf{\:y\:=\:6} \\ \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 9 \\ \\ \sf 1 & \sf 6 \end{array}} \\ \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Answered by yashwanth102030
5

Step-by-step explanation:

Given Question:−

The slope of a line is -3. The line passing through the point (2, 3). Write the coordinates of other two points on this line.

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍AηsωeR ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\begin{gathered}\bf Given - \begin{cases} &\sf{slope \: of \: line \: is \: - 3} \\ &\sf{line \: passing \: through \: point \: (2, 3)} \end{cases}\end{gathered}\end{gathered}\end{gathered}

Given−{

slopeoflineis−3

linepassingthroughpoint(2,3)

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf To \: find :- \begin{cases} &\sf{two \: coordinates \: on \: the \: line} \end{cases}\end{gathered}\end{gathered}

Tofind:−{

twocoordinatesontheline

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Formula \: used:- \begin{cases} &\sf{\bf \:y - y_1 = m(x-x_1)} \end{cases}\end{gathered}\end{gathered}

Formulaused:−{

y−y

1

=m(x−x

1

)

\begin{gathered}\begin{gathered}\begin{gathered}\bf where= \begin{cases} &\sf{(x_1,y_1) \: is \: the \: point \: from \: where \: lne \: passed } \\ &\sf{m \: is \: the \: slope \: of \: line} \end{cases}\end{gathered}\end{gathered}\end{gathered}

where={

(x

1

,y

1

)isthepointfromwherelnepassed

mistheslopeofline

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Solution :- }}

Solution:−

It is given that line passes through the point (2, 3) and having slope, m = - 3.

So, equation of line is given by

\bf \:y - y_1 = m(x-x_1)y−y

1

=m(x−x

1

)

\begin{gathered}\begin{gathered}\begin{gathered}\bf where= \begin{cases} &\sf{ (x_1,y_1) } = (2, 3) \\ &\sf{m = - 3} \end{cases}\end{gathered}\end{gathered}\end{gathered}

where={

(x

1

,y

1

)=(2,3)

m=−3

\sf \: ⟼y - 3 = - 3 \times (x - 2) ⟼y−3=−3×(x−2)

\sf \: ⟼y - 3 = - 3x + 6 ⟼y−3=−3x+6

\sf \: ⟼3x + y = 9\sf \: ⟼(1) ⟼3x+y=9 ⟼(1)

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Now, to find the coordinates on line (1)

\large\underline\red{\bold{❥︎Step :- 1 }}

❥︎Step:−1

\sf \: ⟼❶ Substituting \: 'x = 0' \: in \: (1), we \: get ⟼❶Substituting

x=0

in(1),weget

\begin{gathered}\begin{gathered}:\implies\:\:\sf{3\times{0}\:+\:y\:=\:9} \\ \end{gathered}\end{gathered}

:⟹3×0+y=9

\begin{gathered}\begin{gathered}:\implies\:\:\sf{{0}\:+\:y\:=\:9} \\ \end{gathered}\end{gathered}

:⟹0+y=9

\begin{gathered}\begin{gathered}:\implies\:\:\sf{\:y\:=\:9} \\ \end{gathered}\end{gathered}

:⟹y=9

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 2 }}

❥︎Step:−2

\sf \: ⟼ ❷ Substituting \: 'x = 1' \: in \: (1), \: we \: get ⟼❷Substituting

x = 1

in(1),weget

\begin{gathered}\begin{gathered}:\implies\:\:\sf{3\times{1}\:+\:y\:=\:9} \\ \end{gathered}\end{gathered}

:⟹3×1+y=9

\begin{gathered}\begin{gathered}:\implies\:\:\sf{{3}\:+\:y\:=\:9} \\ \end{gathered}\end{gathered}

:⟹3+y=9

\begin{gathered}\begin{gathered}:\implies\:\:\sf{\:y\:=\:6} \\ \end{gathered}\end{gathered}

:⟹y=6

─━─━─━─━─━─━─━─━─━─━─━─━─

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 9 \\ \\ \sf 1 & \sf 6 \end{array}} \\ \end{gathered}\end{gathered}

x

0

1

y

9

6

Similar questions