the slope of a line -3. The line passing through thr point (2, 3).Write the coordinates of other two points on this line
Answers
- The slope of a line is -3. The line passing through the point (2, 3). Write the coordinates of other two points on this line.
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
It is given that line passes through the point (2, 3) and having slope, m = - 3.
So, equation of line is given by
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ Now, to find the coordinates on line (1)
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
Hᴇɴᴄᴇ,
➢ Pair of points of the given equation are shown in the below table.
─━─━─━─━─━─━─━─━─━─━─━─━─
Step-by-step explanation:
Given Question:−
The slope of a line is -3. The line passing through the point (2, 3). Write the coordinates of other two points on this line.
─━─━─━─━─━─━─━─━─━─━─━─━─
\huge{AηsωeR} ✍AηsωeR ✍
─━─━─━─━─━─━─━─━─━─━─━─━─
\begin{gathered}\begin{gathered}\begin{gathered}\bf Given - \begin{cases} &\sf{slope \: of \: line \: is \: - 3} \\ &\sf{line \: passing \: through \: point \: (2, 3)} \end{cases}\end{gathered}\end{gathered}\end{gathered}
Given−{
slopeoflineis−3
linepassingthroughpoint(2,3)
─━─━─━─━─━─━─━─━─━─━─━─━─
\begin{gathered}\begin{gathered}\bf To \: find :- \begin{cases} &\sf{two \: coordinates \: on \: the \: line} \end{cases}\end{gathered}\end{gathered}
Tofind:−{
twocoordinatesontheline
─━─━─━─━─━─━─━─━─━─━─━─━─
\begin{gathered}\begin{gathered}\bf Formula \: used:- \begin{cases} &\sf{\bf \:y - y_1 = m(x-x_1)} \end{cases}\end{gathered}\end{gathered}
Formulaused:−{
y−y
1
=m(x−x
1
)
\begin{gathered}\begin{gathered}\begin{gathered}\bf where= \begin{cases} &\sf{(x_1,y_1) \: is \: the \: point \: from \: where \: lne \: passed } \\ &\sf{m \: is \: the \: slope \: of \: line} \end{cases}\end{gathered}\end{gathered}\end{gathered}
where={
(x
1
,y
1
)isthepointfromwherelnepassed
mistheslopeofline
─━─━─━─━─━─━─━─━─━─━─━─━─
\large\underline\blue{\bold{Solution :- }}
Solution:−
It is given that line passes through the point (2, 3) and having slope, m = - 3.
So, equation of line is given by
\bf \:y - y_1 = m(x-x_1)y−y
1
=m(x−x
1
)
\begin{gathered}\begin{gathered}\begin{gathered}\bf where= \begin{cases} &\sf{ (x_1,y_1) } = (2, 3) \\ &\sf{m = - 3} \end{cases}\end{gathered}\end{gathered}\end{gathered}
where={
(x
1
,y
1
)=(2,3)
m=−3
\sf \: ⟼y - 3 = - 3 \times (x - 2) ⟼y−3=−3×(x−2)
\sf \: ⟼y - 3 = - 3x + 6 ⟼y−3=−3x+6
\sf \: ⟼3x + y = 9\sf \: ⟼(1) ⟼3x+y=9 ⟼(1)
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ Now, to find the coordinates on line (1)
\large\underline\red{\bold{❥︎Step :- 1 }}
❥︎Step:−1
\sf \: ⟼❶ Substituting \: 'x = 0' \: in \: (1), we \: get ⟼❶Substituting
′
x=0
′
in(1),weget
\begin{gathered}\begin{gathered}:\implies\:\:\sf{3\times{0}\:+\:y\:=\:9} \\ \end{gathered}\end{gathered}
:⟹3×0+y=9
\begin{gathered}\begin{gathered}:\implies\:\:\sf{{0}\:+\:y\:=\:9} \\ \end{gathered}\end{gathered}
:⟹0+y=9
\begin{gathered}\begin{gathered}:\implies\:\:\sf{\:y\:=\:9} \\ \end{gathered}\end{gathered}
:⟹y=9
─━─━─━─━─━─━─━─━─━─━─━─━─
\large\underline\red{\bold{❥︎Step :- 2 }}
❥︎Step:−2
\sf \: ⟼ ❷ Substituting \: 'x = 1' \: in \: (1), \: we \: get ⟼❷Substituting
′
x = 1
′
in(1),weget
\begin{gathered}\begin{gathered}:\implies\:\:\sf{3\times{1}\:+\:y\:=\:9} \\ \end{gathered}\end{gathered}
:⟹3×1+y=9
\begin{gathered}\begin{gathered}:\implies\:\:\sf{{3}\:+\:y\:=\:9} \\ \end{gathered}\end{gathered}
:⟹3+y=9
\begin{gathered}\begin{gathered}:\implies\:\:\sf{\:y\:=\:6} \\ \end{gathered}\end{gathered}
:⟹y=6
─━─━─━─━─━─━─━─━─━─━─━─━─
Hᴇɴᴄᴇ,
➢ Pair of points of the given equation are shown in the below table.
\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 9 \\ \\ \sf 1 & \sf 6 \end{array}} \\ \end{gathered}\end{gathered}
x
0
1
y
9
6