Math, asked by sandeshrokade2004, 3 months ago

The slope of straight line passing throught (5,8)
and (-3,4) is​

Answers

Answered by kailashmannem
18

 \huge{\bf{\green{\mathfrak{Question:-}}}}

 \bullet{\mapsto} The slope of straight line passing throught (5,8) and (- 3,4) is ?

 \huge {\bf{\orange{\mathfrak{Answer:-}}}}

 \bullet{\leadsto} \: \textsf{Given points are (5,8) and (- 3,4).}

 \bullet{\leadsto} \: \textsf{We know that,}

 \bullet{\leadsto} \: \sf Slope \: of \: a \: line \: = \: m \: =  \: \dfrac{y_{2} \: - \: y_{1}}{x_{2} \: - \: x_{1}}

 \bullet{\leadsto} \: \sf \dfrac{y_{2} \: - \: y_{1}}{x_{2} \: - \: x_{1}}

 \bullet{\leadsto} \: \sf \dfrac{4 \: - \: 8}{- \: 3 \: - \: 5}

 \bullet{\leadsto} \: \sf \dfrac{- \: 4}{- \: 8}

 \bullet{\leadsto} \: \sf \dfrac{4}{8}

 \bullet{\leadsto} \: \boxed{\sf \dfrac{1}{2}}

 \huge{\bf{\red{\mathfrak{Conclusion:-}}}}

 \bullet{\mapsto} \: \boxed{\therefore{\sf Slope \: of \: the \: line \: = \: \dfrac{1}{2} \: = \: 0.5.}}

Answered by mahakalFAN
17

═════════════════════════

GIVEN :-

(5,8) (-3,4)

SLOPE OF LINE "-

m = \frac{y²-y¹}{x²-x¹}

SOLUTION :-

\frac{Y²-y¹}{x² -x¹} \\➣ \frac{4-8}{-3-5} \\➣ \frac{-4}{-8} \\    Cut - to - in \frac{-4}{-8} \\\\So, \frac{4}{8} \\  ‣ \frac{1}{2}

═════════════════════════

Hope It Helps

Similar questions